torch.nn.CrossEntropyLoss()

57 篇文章 5 订阅 ¥39.90 ¥99.00
nn.CrossEntropyLoss()是PyTorch用于多分类问题的损失函数,结合了LogSoftmax和NLLLoss。它接受输入张量(input)和目标张量(target),其中input是未经softmax的原始输出,target是样本的真实标签。可选参数包括weight指定类别权重,ignore_index忽略特定类别,reduction控制损失计算方式,默认为'sum'。另外,label_smoothing可用于标签平滑,帮助模型泛化。
摘要由CSDN通过智能技术生成
torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0)

计算过程

nn.CrossEntropyLoss()=nn.LogSoftmax()+nn.NLLLoss()

import torch
import torch.nn as nn

loss_func = nn.CrossEntropyLoss()
pre = torch.tensor([0.8, 0.5, 0.2, 0.5], dtype=torch.float)
tgt = torch.tensor([1, 0, 0, 0], dtype=torch.float)
print("手动计算:")
print("1.softmax")
print(torch.softmax(pre, dim=-1))
print("2.取对数")
print(torch.log(torch.softmax(pre, dim=-1)))
print("3.与真实值相乘")
print(-torch.sum(torch.mul(torch.log(torch.softmax(pre, dim=-1)), tgt), dim=-1))
pri
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值