-
简介
信息熵: 按照真实分布p来衡量识别一个样本所需的编码长度的期望,即平均编码长度
交叉熵: 使用拟合分布q来表示来自真实分布p的编码长度的期望,即平均编码长度
多分类任务中的交叉熵损失函数
-
代码
1)导入包
import torch
import torch.nn as nn
2)准备数据
在图片单标签分类时,输入m张图片,输出一个m x N的Tensor,其中N是分类个数。比如输入3张图片,分三类,最后的输出是一个3 x 3的Tensor,举个例子:
x_input=torch.randn(3,3)
print(<