PyTorch之torch.nn.CrossEntropyLoss()

  1. 简介
    信息熵: 按照真实分布p来衡量识别一个样本所需的编码长度的期望,即平均编码长度
    在这里插入图片描述
    交叉熵: 使用拟合分布q来表示来自真实分布p的编码长度的期望,即平均编码长度
    在这里插入图片描述
    多分类任务中的交叉熵损失函数
    在这里插入图片描述

  2. 代码

1)导入包

import torch
import torch.nn as nn

2)准备数据
在图片单标签分类时,输入m张图片,输出一个m x N的Tensor,其中N是分类个数。比如输入3张图片,分三类,最后的输出是一个3 x 3的Tensor,举个例子:

x_input=torch.randn(3,3)
print(<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值