TensorFlow加载本地图像

本文介绍了在TensorFlow 2.5.0中使用tf.expand_dims()进行图像处理,并探讨了两种图像归一化方法:一种将图像范围归一化到[0, 1],另一种归一化到[-1, 1]。通过直方图比较,展示了两种方法下图像的分布特点。" 137793149,22893118,前端文件操作与File、Blob对象详解,"['前端开发', 'JavaScript', 'File API', 'Blob', '数据处理']
摘要由CSDN通过智能技术生成

 TensorFlow version: 2.5.0

# 方式一
import tensorflow as tf

img_path = 'cat.jpg'
img = tf.io.read_file(img_path) # 返回整个输入图像的Tensor,没有任何解析,是输入管道的第一步。
img = tf.io.decode_jpeg(img, channels=3) # 将JPEG编码的图像解码为uint8 tensor.
img = tf.image.resize(img, [224, 224]) # 调整图像大小(可以指定方法)type:float32 tensor
img = tf.expand_dims(img, axis=0) # 增加维度 type:float32 tensor

# 方式二

from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array, array_to_img

IMG_DIM = (224, 224)
sample_img_path = 'benign_test.png'
sample_img = load_img(sample_img_path, target_size=IMG_DIM)
sample_img_tensor = img_to_array(sample_img)
sample_img_tensor = np.expand_dims(sample_img_tensor, axis=0)
sample_img_tensor /= 255. # 像素归一化

1.tf.expand_dims():

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

despacito,

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值