python学习笔记之tensorboard绘制结构曲线分析各参数

原创 2018年04月16日 14:04:47
# coding: utf-8

# In[2]:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# In[3]:

# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)



# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#参数概要
def variable_summaries(var):
    with tf.name_scope('summaries'):
        mean=tf.reduce_mean(var)
        tf.summary.scalar('mean',mean)
        with tf.name_scope('stddev'):
            stddev=tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
        tf.summary.scalar('stddev',stddev)#标准差
        tf.summary.scalar('max', tf.reduce_max(var))
        tf.summary.scalar('min',tf.reduce_min(var))#最小值
        tf.summary.histogram('histogram',var)#直方图
#定义一个命名空间
with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784],name='x_input')
    y = tf.placeholder(tf.float32, [None, 10],name='y_input')
with tf.name_scope("layer"):
    with tf.name_scope('weights'):
        W = tf.Variable(tf.zeros([784, 10]))
        variable_summaries(W)
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]))
        variable_summaries(b)
    with tf.name_scope('wx_plus_b'):
        wx_plus_b=tf.matmul(x, W) + b
# 创建一个简单的神经网络
    with tf.name_scope('prediction'):
        prediction = tf.nn.softmax(wx_plus_b)

with tf.name_scope('loss'):
    # 二次代价函数
    loss = tf.reduce_mean(tf.square(y - prediction))
    tf.summary.scalar('loss',loss)#
with tf.name_scope("train"):
    # 使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()

with tf.name_scope('accuracy'):
    with tf.name_scope("correct_prediction"):
# 结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
# 求准确率
    with tf.name_scope("accuracy"):
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar('accuracy',accuracy)
#合并所有的summary
merged=tf.summary.merge_all()

with tf.Session() as sess:
    sess.run(init)
    writer=tf.summary.FileWriter('logs/',sess.graph)
    for epoch in range(51):
        for batch in range(n_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            summary,_=sess.run([merged,train_step], feed_dict={x: batch_xs, y: batch_ys})

        writer.add_summary(summary,epoch)
        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

# In[ ]:



keras 画训练过程曲线

# Fit the model history = tiramisu.fit(train_data, train_label, batch_size=batch_...
  • xiaojiajia007
  • xiaojiajia007
  • 2017-08-04 10:39:53
  • 4104

Tensorboard 上显示不同训练模型曲线的方法

$ tensorboard --logdir=run1:"/home/.../summary",run2:"/home/.../summary" --port=6006
  • jasonzzj
  • jasonzzj
  • 2017-03-03 10:04:36
  • 1854

spyder绘制loss曲线

caffe的python接口学习(7):绘制loss和accuracy曲线 转自:http://www.cnblogs.com/denny402/p/5686067.html 使用python...
  • langxing1992
  • langxing1992
  • 2017-05-26 10:30:26
  • 441

TensorBoard一幅图中显示多条曲线

原文链接点击打开链接import tensorflow as tf from numpy import random writer_1 = tf.summary.FileWriter("....
  • u011606714
  • u011606714
  • 2018-03-02 15:10:33
  • 501

TensorBoard 简介及使用流程

仅供学习参考,转载地址:http://blog.csdn.net/mzpmzk/article/details/77914941 一、TensorBoard 简介及使用流程 1、Tenso...
  • gsww404
  • gsww404
  • 2017-11-22 17:08:23
  • 2072

TensorBoard: Graph Visualization

TensorBoard:图形可视化     TensorFlow计算图功能强大但复杂。 图表可视化可以帮助您理解和调试它们。 这是一个可视化工作的例子。     可视化TensorFlow...
  • eidolon_foot
  • eidolon_foot
  • 2017-11-21 15:05:30
  • 178

一、正确安装 Keras & TensorFlow 并调用 TensorBoard 绘制训练曲线

  本文的主要目的在于正确安装Keras&TensoFlow两种主流的深度学习框架,并正确配置环境已实现在Keras中调用TensorBoard绘制训练曲线的目的。在完成改目的的过...
  • dugudaibo
  • dugudaibo
  • 2017-09-13 09:25:05
  • 1343

最简单的tensorflow 绘制准确率损失函数的画图

plt.plot(x,label=‘’x)   x就是输入数据 plt,plot(seq,x,label='x') seq就是x下标 plt.legend(loc='upper left')   ...
  • u010211479
  • u010211479
  • 2017-11-10 10:49:10
  • 1105

TensorFlow保存TensorBoard图像

简单的代码: import tensorflow as tf In [2]: matrix1=tf.constant([[3.,3.]]) In [3]: matrix2=tf.cons...
  • YUfei00002
  • YUfei00002
  • 2017-12-28 00:59:27
  • 543

keras可视化模型训练过程

keras在搭建神经网络模型以及训练神经网络方面,简单又好用,总结几个keras的API使用,持续更新。当然也可以通过keras官网进行学习。https://keras.io/ 模型可视化 将模...
  • m0_37477175
  • m0_37477175
  • 2018-01-22 17:46:17
  • 560
收藏助手
不良信息举报
您举报文章:python学习笔记之tensorboard绘制结构曲线分析各参数
举报原因:
原因补充:

(最多只允许输入30个字)