前言:
这篇博客为阅读论文后的总结与感受,方便日后翻阅、查缺补漏,侵删!
论文:Conditional Generative Adversarial Nets
解决的问题:
介绍这个问题前,我们首先回顾GAN的优点与缺点:
GAN 的优点:
● GAN是一种生成式模型,相比较其他生成模型(玻尔兹曼机和GSNs)只用到了反向传播,而不需要复杂的马尔科夫链。
● 相比其他所有模型,GAN可以产生更加清晰,真实的样本。
● GAN采用的是一种无监督的学习方式训练,可以被广泛用在无监督学习和半监督学习领域。
● 相比于变分自编码器,,GANs没有引入任何决定性偏置( deterministic bias),变分方法引入决定性偏置,因为他们优化对数似然的下界,而不是似然度本身,这看起来导致了VAEs生成的实例比GANs更模糊。
● 相比VAE,GANs没有变分下界,如果鉴别器训练良好,那么生成器可以完美的学习到训练样本的分布。换句话说,GANs是渐进一致的,但是VAE是有偏差的。
● GAN应用到一些场景上,比如图片风格迁移,超分辨率,图像补全,去噪,避免了损失函数设计的困难,不管三七二十一,只要有一个的基准,直接上判别器,剩下的就交给对抗训练了。
GAN的缺点:
● 训练GAN需要达到纳什均衡,有时候可以用梯度下降法做到,有时候做不到。我们还没有找到很好的达到纳什均衡的方法,所以训练GAN相比VAE或者PixelRNN是不稳定的,但我认为在实践中它还是比训练玻

本文深入探讨了条件生成对抗网络(CGAN)的工作原理及其在图像生成和标注方面的应用,对比了CGAN与传统GAN的区别,包括其在解决训练稳定性、多模态数据处理和图像细节控制等方面的优势。
最低0.47元/天 解锁文章
2879

被折叠的 条评论
为什么被折叠?



