算法衡量指标

# 算法衡量指标
from sklearn import metrics

y_test = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]  # 真实标签
predictions = [0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2]   # 模型训练出的结果,即预测值

accuracy = metrics.accuracy_score(y_test, predictions)
recall = metrics.recall_score(y_test, predictions, average="micro")
precision = metrics.precision_score(y_test, predictions, average="micro")
F1 = metrics.f1_score(y_test, predictions, average="micro")
NMI = metrics.normalized_mutual_info_score(y_test, predictions)
print("accuracy:", accuracy, '\n', "precision:", precision, '\n', "recall:", recall, '\n', "F1 :", F1, '\n', "NMI:", NMI, '\n')

输出结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值