定义
正十七边形是指几何学中有17条边及17只角的正多边形。
性质
根据多边形对角线公式:
s
u
m
对
角
线
=
n
(
n
−
3
)
2
\Large sum_{对角线}=\frac{n(n-3)}{2}
sum对角线=2n(n−3)
可以知道它有119条对角线。它的内角和为
2700
°
2700°
2700°
历史
众所周知,最早的十七边形画法创造人是高斯。但是,高斯本人并没有用尺规做出正十七边形,事实上,完成证明之后正十七边形的做法对数学研究者是显而易见的。第一个真正的正十七边形尺规作图法是在1825年由约翰尼斯·厄钦格给出。
做法
显得无聊的我真的在geogebra.org上把正十七边形画了出来:
由于图中的线、圆极多,所以我隐藏了很大一部分,实际应该是这样子的:
其实挺美的!!!
接下来附上做法:
1.
给
一
圆
O
,
作
两
垂
直
的
直
径
A
B
、
C
D
.
2.
在
O
A
上
作
E
点
使
O
E
=
1
4
A
O
,
连
结
C
E
.
3.
作
∠
C
E
B
的
平
分
线
E
F
.
4.
作
∠
F
E
B
的
平
分
线
E
G
,
交
C
O
于
P
.
5.
作
∠
G
E
H
=
45
°
,
交
C
D
于
Q
.
6.
以
C
Q
为
直
径
作
圆
,
交
O
B
于
K
.
7.
以
P
为
圆
心
,
P
K
为
半
径
作
圆
,
交
C
D
于
L
、
M
.
8.
分
别
过
M
、
L
作
C
D
的
垂
线
,
交
圆
O
于
N
、
R
.
9.
作
弧
N
R
的
中
点
S
,
以
S
N
为
半
径
将
圆
O
分
成
17
等
份
.
\begin{aligned} &1.给一圆O,作两垂直的直径AB、CD. \\ &2.在OA上作E点使OE=\frac 1 4AO,连结CE.\\ &3.作∠CEB的平分线EF.\\ &4.作∠FEB的平分线EG,交CO于P.\\ &5.作∠GEH=45°,交CD于Q.\\ &6.以CQ为直径作圆,交OB于K.\\ &7.以P为圆心,PK为半径作圆,交CD于L、M.\\ &8.分别过M、L作CD的垂线,交圆O于N、R.\\ &9.作弧NR的中点S,以SN为半径将圆O分成17等份.\\ \end{aligned}
1.给一圆O,作两垂直的直径AB、CD.2.在OA上作E点使OE=41AO,连结CE.3.作∠CEB的平分线EF.4.作∠FEB的平分线EG,交CO于P.5.作∠GEH=45°,交CD于Q.6.以CQ为直径作圆,交OB于K.7.以P为圆心,PK为半径作圆,交CD于L、M.8.分别过M、L作CD的垂线,交圆O于N、R.9.作弧NR的中点S,以SN为半径将圆O分成17等份.
最后附上自己录的动图:
其实这篇博客很水的
\Large\fbox{其实这篇博客很水的}
其实这篇博客很水的