面试题1-概率问题

1.n把钥匙开锁,第k次(1=<K<=N)打开的概率?

分析:钥匙开过一次就知道是否能打开,因此是有序排列;只有一把可以打开,前k-1次都没有挑中正确的钥匙

求解1:第一次没打开P(X=0)=(N-1)/N

          第二次没打开P(X=0)=(N-2)/(N-1)

           ...

          第k次打开P(X=1)=1/(N-(k-1))

          概率P=P1*P2*...Pk=1/N

求解2:有序排列,n把锁一共有n!种可能,在第k个位置固定正确的钥匙,其他位置随意,共有(n-1)!种可能

         第k次打开P(X=k)=(n-1)!/n!=1/n

1.1 同类扩展问题1:n个人参与抽签,一共n张彩票,只有一个人会中奖,那么先后抽取的获奖概率是等同的。

1.2 扩展问题2:n个人参与抽签,一共n张彩票,抽到后放回盒子,只有1个人会中奖,那么先后抽的概率还一样吗?

求解1:第一次没打开P(X=0)=(N-1)/N

          第二次没打开P(X=0)=(N-1)/N

           ...

          第k次打开P(X=1)=1/N

          概率P=P1*P2*...Pk=[(N-1)/N]^(K-1)*1/N

越靠后抽中概率越低

2.【配对问题】

从n双不同的手套中任取2r(2r< n)只,求下列事件发生的概率:
(1)没有成双的手套

分析:n双手套一共2n只,没有成双说明2r只取自n双,每双可取左可取右C_{n}^{2r}\times \left [ C_{2}^{1} \right ]^{2r}

          所有一共有C_{2n}^{2r}种取法

P(没有成双手套)=\tfrac{C_{n}^{2r}\times \left [ C_{2}^{1} \right ]^{2r}}{C_{2n}^{2r}}
(2)只有一双手套

n双里边取到一双,C_{n}^{1}

另外(n-1)双取(2r-2)只,一双一只,可取左或右C_{n-1}^{2r-2}\times \left [ C_{2}^{1} \right ]^{2r-2}

P(只有一双手套)=\tfrac{C_{n}^{1}C_{n-1}^{2r-2}\times \left [ C_{2}^{1} \right ]^{2r-2}}{C_{2n}^{2r}}
(3)恰有两双手套

n双里边取到一双,C_{n}^{2}

另外(n-2)双取(2r-4)只,一双一只,可取左或右C_{n-2}^{2r-4}\times \left [ C_{2}^{1} \right ]^{2r-4}

P(只有两双手套)=\tfrac{C_{n}^{2}C_{n-2}^{2r-4}\times \left [ C_{2}^{1} \right ]^{2r-4}}{C_{2n}^{2r}}

(4)有r双手套

一共取2r只,有r双配对成功,说明取到的全部成对。

P(有r双手套)=\tfrac{C_{n}^{r}}{C_{2n}^{2r}}

 

3.【古典概率的乱序问题】
有外形相同的n把锁和n把钥匙,每把钥匙只能打开其中的一把锁,现将锁和钥匙随机配对,每对锁和钥匙各一把.

(1)试求第i把锁能被所配对钥匙打开的概率。

n个钥匙随机组合,一共有n!种可能

第i把配对打开,包含在这把钥匙配对打开时其他也有可能打开的情况(n-1)!

P(至少有1把打开)=(n-1)!/n!

(2)试求至少有两把锁能被所配对钥匙打开的概率。

P(至少有2把打开)=\tfrac{C_{n}^{2}(n-2)!}{n!}

(3)至少有1把能够配对---A或者B或者C

P(AUBUC)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

4.【分房问题】

一共有n个人,N间房,(n<N)

每个人等可能分配机会。一共有N^n种情况
问题1:A=某指定的n间房中各有一人;

P(A)=n!/N^n
(2)B=恰有n间房各有一人;

首先挑选出任意n间房,C_{N}^{n}

P(B)=C_{N}^{n}*n!/N^n
(3)C=“某指定的一间房中恰有m人

先挑选m人,C_{N}^{m}

剩余(n-m)人被任意分配到N-1间房中

P(B)=C_{N}^{m}*(N-1)^(n-m)/N^n

 

【5 概率题】

一根木棒,截成三截,组成三角形的概率是多少?
设第一段截x,第二段截y,第三段1-x-y。
1⃣️三条边都是正数且小于原来边长,则有0<x<1,0<y<1,0<1-x-y<1
2⃣️两边之和大于第三边,x+y>1-x-y,x+1-x-y>y,y+1-x-y>x,化简即得
0<x<1/2,0<y<1/2,1/2<x+y<1
画图可知,此时(x,y)必须在边长为1/2的三角形的右上角的半个直角三角形里,面积为1/8。
于是最终概率为 (1/8)/(1/2) = 1/4。

 

 参考:https://blog.csdn.net/BertDai/article/details/78070092

参考:https://blog.csdn.net/lynn0085/article/details/83628256

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值