IMPROVING SEQUENCE-TO-SEQUENCE VOICE CONVERSION BY ADDING TEXT-SUPERVISION

作者:zhang-jingxuan
单位:中科大
会议:2018 icassp

abstract:

本文提出用平行数据中的文本标注改善seq2seq vc的性能。首先:设计多任务的学习机制,在seq2seq中间层加辅助分类器,并且预测语言标签(次级任务)。其次:利用文本对齐的数据增强方法对模型训练生成额外的平行序列。
实验结果表明:带有语言标签的多任务学习对于减少vc seq2seq错误率非常有效。数据增强的方法在只有50-100句训练数据可用时进一步增强vc的性能。

1. introduction

作者之前的SCENT工作提出encoder-decoder based on attention的seq2seq的vc解决方案,相对于GMM和DNN-based的方法取得更好的自然度和相似度,但是存在转换的语音错误的发音、重复音素和跳音素的情况。(个人假设是分的单位不够细)
因为在VC任务中,可以从平行数据中得到对应的文本,因此想到把文本监督加进来改善性能。首先:设计一个multi-task learing structure,在encoder的输出和decoder输入之间加辅助分类器,预测hidden vector的语言标签,用于减少转换中错误发音的问题。因此,中间层被次级任务正则处理,使得它更加与语言相关。其次:利用文本对齐的信息提出了数据增广的办法,之前的seq2seq是将整个句子作为一个序列用于训练,本文利用文本中对齐的点得到额外的平行句子的碎片,用于增加模型的泛化性。

2. Previous Work
2.1. related work

 文本信息用在vc任务中之前就有研究,用于限制声学特征对齐。【17】中音素信息被用于决策树。【9】提出一个音素先验的LSTM-RNN模型,mono-phone和谱参数都作为模型输入。和之前的研究相比,我们只在模型训练的时候用到text transcription,转换的时候不需要。
 multi-task learning被成功的用于语音识别,语音合成和NLP。在基于DNN的语音合成中,预测目标说话人的perceptual representation 的次级任务,用于提高合成语音的主观质量。本文的次级任务是想要让隐层表示更加语言相关。
 图像任务中,图片裁剪是很常用的数据增广方式,因此在语音中,我们利用文本标注将平行的语音进行切分,以便更好的利用平行句子中的对齐信息,同时避免seq2seq模型的过拟合。

2.2. Sequence-to-sequence voice conversion

在这里插入图片描述

3. PROPOSEDMETHODS

首先从文本转录中拿到像音素类别这样的语言标签,然后在数据准备阶段分别把他们和source/target对齐。可以通过人工标注或者HMM这样自动的方法做对齐。两种方法都用文本监督提升了seq2seq VC的性能。

3.1. Multi-task learning with linguistic labels

 在预测target speaker声学特征的同时,还有一个子任务是从模型的中间层预测语言标签。如图1所示,两个辅助分类器加在encoder的输出和decoder的输入之间。对于每个分类器,输入hidden representation,经过drop out layer(为了增加泛化性??),然后通过softmax层投影到输出(和语言标签数量一致)上。分类器的目标是当前隐层对于encoder和decoder分别应该对应的语言标签。分类器的CE loss被加权到模型的mel谱loss上。
 通过文本的强监督,分类器可以改善任务的性能。直觉感受,分类器可以引导模型生成更加文本相关的隐层表示。在encoder和decoder部分加的分类器也可以帮助attention module预测正确的对齐。而且分类器只在训练的时候用,conversion的时候丢弃,因此conversion时候不需要额外的输入。

3.2. Data-augmentation by text alignment

本文中,‘alignment point’定义为一对平行句子中常见的静音片段。图2给了一个例子说明,parallel fragment指的是从starting 和ending point中挑选的有相同内容的片段。把alignment point定义为静音的原因是尽可能减少周围内容的影响。对于一对平行句子,如果有N个点是可以对齐的,那么就可以有 C N 2 C_N^2 CN2种挑选平行片段的可能。
在这里插入图片描述

4. EXPERIMENTS
4.1. Experimental conditions

在这里插入图片描述
首先用a rule-based grapheme-to-phoneme model 将文本标注转成带调的音素序列,然后用HMM将带调的音素和speech对齐。
本文主要做了3组对比实验:

  1. seq2seq:baseline是之前的成果【10】
  2. seq2seq-MT :训练阶段加两个额外的分类器预测音素类别,音素和声调的加权量分别是0.1和0.05,然后在验证集上做优化。
  3. seq2seq-MT-DA
4.2. Objective evaluation

用STRAGHT提取converted speech的f0和mel倒谱,然后在测试集上计算梅尔谱失真(MCD)和F0均方差(F0-,MSE),结果展示在表1中。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值