SAR目标检测数据集汇总(持续更新~2025)

本文整理了多个合成孔径雷达(SAR)目标检测数据集,包括MSTAR、OpenSARShip、SSDD、AIR-SARShip等,涵盖了舰船、飞机、车辆等多种目标,并提供了下载链接。这些数据集为SAR图像的深度学习算法研究提供了基础,有助于提升目标检测和识别的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SAR目标检测识别数据集汇总(持续更新~2025)

  • 随着深度学习在计算机视觉(CV)领域的突破,SAR图像目标检测领域也开始采用这些深度学习算法,虽然和光学图像成像机理不同,但是可以借鉴CV领域的优秀算法进行改进,目前也有很多论文展现了不错的效果。下面针对SAR目标检测的学习和研究,总结一些数据集并提供下载方式,方便后续的研究。

1. MSTAR (1996)

  • 下载链接:https://pan.baidu.com/s/1SAdmYAOHPheAH98CLP9dQg
    提取码:h2ig

  • 运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition, MSTAR)数据集,是美国国防高级研究计划署(Defense Advanced Research Project Agency, DARPA) 和空军研究室(Air Force Research Laboratory, AFRL) 提供的SAR图像。

  • 采集该数据集的传感器为高分辨率的聚束式合成孔径雷达,该雷达的分辨率为0.3m×0.3m。工作在X波段,所用的极化方式为HH极化方式。对采集到的数据进行前期处理,从中提取出像素大小为128×128包含各类目标的切片图像。该数据大多是静止车辆的SAR切片图像,包含多种车辆目标在各个方位角下获取到的目标图像。

  • MSTAR混合目标数据中包含十类军事目标的切片图像,这些军事目标分别为2S1(自行榴弹炮)、BRDM2(装甲侦察车)、BTR60(装甲运输车)、D7(推土机)、T62(坦克)、ZIL131(货运卡车)、ZSU234(自行高炮)、T72。这些目标是雷达工作在多种不同的俯仰角时,各个目标在方向上面的成像图片。光学图像和SAR图像如下图所示:

在这里插入图片描述

  • 数据分为标准工作条件(SOC)和扩展工作条件(EOC),标准工作条件是测试与训练SAR图像目标外形配置和型号相同,仅成像时目标的俯仰角和方位角不同,扩展工作条件是指测试与训练SAR图像有很大不同,主要是成像角度的改变、外形配置的变化以及型号不同。

  • 除了10类军事目标外,MSTAR数据集还提供了大幅场景SAR图像,包含森林、地面、建筑等杂波,可用于目标检测和识别。

2. OpenSARShip2.0 (2017)

3. SSDD / SSDD+ (2020)

  • 下载链接:https://pan.baidu.com/s/1sVs63jB_aM-RbcHEaWQgTg
    提取码:4pz1

  • SSDD是国内外公开的第一个专门用于SAR图像舰船目标检测的数据集,可以用于训练和测试检验算法,得到了三十级所高校和研究所的使用。

  • SSDD是通过在网上下载公开的SAR图像,并将目标区域裁剪成大小为500×500左右像素,并通过人工标注舰船目标位置而得的。数据主要有RadarSat-2、TerraSAR-X和Sentinel-1传感器,HH、HV、VV和VH四种极化方式,分辨率为1m-15m,在大片海域和近岸地区都有舰船目标。

  • 旋转边框在遥感目标检测中也得到了很多应用。旋转边框可以完全分开舰船与背景像素。通常,垂直边框中的很多像素不属于船的像素,这对于区分背景和舰船区域十分不利,尤其是密集排列的交叠非常大的舰船目标,所以最好利用旋转边框来定位舰船目标。

  • 旋转边框的宽度和高度可以显示船的真实形状而垂直边框的长宽比和尺寸与船的真实形状不一致,旋转边框可在完成检测任务的同时实现对目标的方位向估计(会存在180°模糊),不需要设计单独的舰船目标方向估计算法。
    在这里插入图片描述

  • 在垂直边框的基础上增加一个旋转角度来表达旋转边框,可以表示成(x, y, w, h, θ \theta θ), θ \theta θ是从y轴正向到舰船长中轴方向的角度。为了用旋转边框对舰船目标进行检测,对SSDD的标签进行了改进,对其在类别和位置基础上增加了旋转角度信息,将这个数据集称为SSDD+。

4. AIR-SARShip2.0 (2019)

  • 下载链接:http://radars.ie.ac.cn/web/data/getData?dataType=SARDataset

  • 参考论文:http://radars.ie.ac.cn/article/doi/10.12000/JR19097 AIR-SARShip-1.0: High-resolution SAR Ship Detection Dataset

  • 高分辨率SAR舰船检测数据集-2.0(AIR-SARShip-2.0)发布300幅图像,图像分辨率包括1m和3m,成像模式包括聚束式和条带式,极化方式为单极化,极化方式为VV,场景类型包含港口、岛礁、不同等级海况的海面,目标覆盖运输船、油船、渔船等十余类数千艘舰船。

  • 图像尺寸约为1000×1000像素,图像格式为Tiff、单通道、8/16位图像深度,标注文件提供相应图像的长宽尺寸、标注目标的类别以及标注矩形框的位置。

在这里插入图片描述

5. SAR-Ship-Dataset (2019)

6. HRSID (2020)

  • 下载链接:https://aistudio.baidu.com/aistudio/datasetdetail/54512

  • 参考文献:https://ieeexplore.ieee.org/document/9127939/ HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation

  • 数据集是电子科技大学在2020年1月发布数据集,HRSID是高分辨率SAR图像中用于船舶检测、语义分割和实例分割任务的数据集。该数据集共包含5604张高分辨率SAR图像和16951个ship实例。ISSID数据集借鉴了Microsoft Common Objects in Context (COCO)数据集的构建过程,包括不同分辨率的SAR图像、极化、海况、海域和沿海港口。该数据集是研究人员评估其方法的基准。对于HRSID, SAR图像的分辨率分别为:0.5m, 1 m, 3 m。

在这里插入图片描述

7. MiniSAR (2006)

8. FARAD SAR DATA(2015)

9. RSDD-SAR (2022) 斜框标注

  • 来源雷达学报:https://radars.ac.cn/web/data/getData?dataType=SDD-SAR
  • 舰船斜框检测数据集(Rotated Ship Detection Dataset in SAR Images, RSDD-SAR),采用了国产高分3号卫星数据和欧空局TerraSAR-X卫星数据。该数据集由84景高分3号数据和41景TerraSAR-X数据切片及2景未剪裁大图,共127景数据构成,包含多种成像模式、多种极化方式、多种分辨率切片7000张,舰船实例10263个,具有旋转方向任意、长宽比大、小目标占比高和场景丰富的特点。图1为RSDD-SAR数据集典型场景切片示例。
    在这里插入图片描述

10. MSAR-1.0 (2022)

  • 来源:雷达学报:https://radars.ac.cn/web/data/getData?dataType=MSAR
  • 大规模多类SAR目标检测数据集-1.0(MSAR-1.0)共包括28449张检测切片,采用海丝一号卫星和高分三号卫星数据。
    MSAR-1.0数据集极化方式包括HH、HV、VH和VV。该数据集场景包括机场、港口、近岸、岛屿、远海、城区等;类型包括飞机、油罐、桥梁和船只四类目标,由1851架桥梁,39858条船只,12319个油罐和6368架飞机组成。图1是MSAR-1.0数据集的部分切片样例。
  • MSAR-1.0数据集切片尺寸为256×256像素,部分桥梁切片为2048×2048像素,格式为三通道灰度图像,24位深JPG。标注格式为XML格式,记录目标类型和位置信息,其中位置信息由Xmin、Xmax、Ymin和Ymax组成。MSAR-1.0数据集切片标签文件示例见下面数据集使用说明中图2、3。符合Yolo系列、PolarMask、SSD和Faster-RCNN等主流检测网络的格式要求。
    在这里插入图片描述

11. SAR-Airport-1.0 (2022)

  • 来源:雷达学报:https://radars.ac.cn/web/data/getData?dataType=SAR-Airport
  • 星载SAR机场检测数据集,主要采用了欧空局Sentinel-1B卫星数据,构建一套包含多种极化方式、多种尺寸大小、涵盖多个国家多个城市的SAR机场目标数据集,推动SAR机场目标检测等先进技术的深入研究。数据集由北京化工大学遥感技术研究所团队构建。
  • 星载SAR机场检测数据集主要由images和labels两部分组成,images文件夹总计624张切片,包含训练集和测试集;labels文件夹包含了所有图片对应的标注文件。两个文件夹中的文件命名方式均为“国家_地区_序列号”。标注示例为图1所示,图1(a)为切片示例,图1(b)为对应的.txt标签文件,一行标注一个目标,分别记录检测类型(0:机场)、归一化的机场中心位置(列、行标号)、归一化的机场目标框宽度和归一化的机场目标框长度,符合Yolo系列、PolarMask、SSD和Faster-RCNN等主流检测网络的格式要求。
    在这里插入图片描述

12. FUSAR-Ship 1.0 (2019)

  • 来源:雷达学报:https://radars.ac.cn/web/data/getData?dataType=FUSAR
  • FUSARShip 高分辨率船只数据集,包含15个主要船舶类别、98 个子类别和许多非船舶目标的海洋目标。数据切片取自126幅原始高分三号遥感图像,极化模式包含DH和DV,分辨率为1.124m×1.728m,成像模式为 UFS 模式,覆盖了各种海、陆、海岸、河流和岛屿场景。
  • 本数据集累16144个切片,其中包括与 AIS 信息匹配的船只 6252 张,类似船的亮点等强虚警 2045 张,桥及海岸线 1461 张, 沿岸区域及岛屿 1010 张,复杂海波杂波1967张,普通海面1785张,陆地1624张,适用于复杂海面的船只检测与识别工作。图1为FUSARShip船只切片样例。
  • 数据集内图像的标注标准为以船舶目标最小外接离心圆的圆心为中点,向外扩充256个像素点,船舶切片大小固定,以512像素×512像素的切片形式存储。
    在这里插入图片描述

13. SRSDD-SAR (2021)

  • 由中国科学院空天信息创新研究院采用高分三号卫星影像制作,成像模式均为聚束式,空间分辨率为1m,具有HH和VV两种极化方式。该数据集从30景SAR影像中提取了666个尺寸为1024像素×1024像素的切片,共计2884个6类船舶样本,同时采用旋转框标记目标,适用于分布密集的船舶检测识别任务。
    原下载地址:https://github.com/HeuristicLU/SRSDD-V1.0
    在这里插入图片描述

14. SAR-AIRcraft-1.0 (2023)

15. SAMPLE (2019) MSTAR车辆仿真+实测

  • 论文地址:https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10987/2523460/A-SAR-dataset-for-ATR-Development–the-Synthetic-and/10.1117/12.2523460.short
  • SAMPLE数据集由美国空军研究实验室于2019年发布,主要包括不同观测条件下各种车辆目标的合成SAR图像。除背景外,目标构型、传感器参数、观测俯角、方位角等均与实测MSTAR SAR图像保持一致.因此 SAMPLE数据集为研究模拟和实测SAR图像之间的差异以及识别算法的迁移提供了一个很好的基准。SAMPLE数据集公开部分包含10个地面军用车辆目标(2S1自主火箭炮、BMP-2、BTR-70装甲运兵车、M35、M548卡车、M1、M2、M60、T-72坦克、ZSU234防空部队)的合成SAR图像片,其方位角范围为10°~ 80°,俯角范围为15°~ 17°。SAR传感器成像时工作在x波段,分辨率为0.3m。
    在这里插入图片描述

16. SARDet-100K(NeurIPS 2024) 首个遥感SAR目标检测大规模数据集

论文地址:
Paper: SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection
GitHub:https://github.com/zcablii/SARDet_100K
知乎介绍:
李宇轩:(NeurIPS2024 spotlight) SARDet-100K:首个遥感SAR目标检测大规模数据集!SAR入坑指南(发展现状、问题挑战、数据集、解决方案)这一篇就够了

SARDet-100K数据集是南开大学和国防科技大学联合创建的首个达到COCO级别的大规模多类别SAR(合成孔径雷达)目标检测数据集。该数据集包含了116,598幅图像和245,653个实例,涵盖了六个不同的类别:飞机、船舶、汽车、桥梁、油罐和港口。数据来源于10个公开可用的高质量数据集,如中国的科学研究部门、欧洲的空间部门和美国的军事部门,研究团队进行了广泛的调查、收集和标准化工作,确保数据集的一致性与可用性。该数据集的规模和多样性为研究人员提供了强大的训练和评估功能,有助于推进合成孔径雷达目标检测算法和技术,促进该领域SOTA模型的发展。
在这里插入图片描述

17. SARATR-X (TIP 2024) SAR目标识别基础模型

论文地址: SARATR-X: Towards Building A Foundation Model for SAR Target Recognition
Github:
SARATR-X (GitHub)

知乎介绍:
SAR目标识别基础模型SARATR-X

提出首个公开发表的SAR图像目标识别基础模型SARATR-X 1.0。
①率先开展基于自监督学习的SAR目标特征表示学习
②创新性地提出了适用于SAR图像的联合嵌入-预测自监督学习新框架(Joint Embedding Predictive Architecture for SAR ATR, SAR-JEPA),让深度神经网络仅仅预测SAR图像稀疏且重要梯度特征表示,有效地抑制了SAR图像相干斑噪声,避免预测SAR图像含相干斑噪声的原始像素强度信息
③研制了首个SAR图像目标识别基础模型SARATR-X(0.66亿参数,基于Transformer),突破了复杂场景中SAR目标特征学习对大规模高质量标注数据高度依赖的瓶颈,大幅提升了预训练基础模型的认知能力。

在这里插入图片描述
在这里插入图片描述

18. RSAR (CVPR 2025) 大规模多类别旋转SAR目标检测数据集

论文地址:RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark
开源代码:https://github.com/zhasion/RSAR
知乎介绍:
zhasion:CVPR 2025 | RSAR:大规模多类别旋转SAR目标检测数据集

该工作提出了一个大规模多类别的旋转SAR目标检测数据集,从单位圆和维度映射的统一视角重新看待旋转目标检测中的角度边界不连续问题,并对水平框旋转框弱监督模型中角度编码状态进行限制,大幅提升了模型性能。

在这里插入图片描述

19. FAIR-CSAR (TGRS 2025)复图像目标数据集V1.0

论文地址:FAIR-CSAR: A Benchmark Dataset for Fine-Grained Object Detection and Recognition Based on Single-Look Complex SAR Images
雷达学报下载介绍地址:
雷达学报
雷达学报链接
FAIR-CSAR复图像目标数据集V1.0(FAIR-CSAR-V1.0)基于国产高分3号卫星单视复值影像产品构建,是目前数据规模最大、标注粒度最精细、图像信息最丰富的SAR图像细粒度目标数据集。FAIR-CSAR-V1.0旨在推动SAR图像目标检测识别、目标特性认知等核心技术的发展与突破。该数据集由中国科学院空天信息创新研究院目标认知与应用技术国家级重点实验室制作。
FAIR-CSAR-V1.0数据集由175景完整的高分3号1级单视复值影像产品处理得到,覆盖全球32个地区的机场、炼油厂、港口以及河道等,其数据总量达250Gb,实例数目超过340K。该数据集涵盖5个主类别和22个子类别,提供成像参数(如雷达中心频率、脉冲重复频率)及目标特性(如星地相对方位角、强散射点分布)的详细标注。
FAIR-CSAR-V1.0数据集含SL数据集和FSI数据集两个子数据集。其中SL数据集数据采用聚束模式,标称分辨率为1m,包含170K实例和22类目标;FSI数据集采用精细条带模式,标称分辨率为5m,包含170K实例和3类目标。
在这里插入图片描述

在这里插入图片描述

20. NUDT4MSTAR (2025) 多类别(40类) SAR车辆识别数据集

论文地址:
NUDT4MSTAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
为了取代MSTAR(10种车辆型号),国防科技大学电子科学学院相关团队耗时两年构建SAR车辆目标识别数据集NUDT4MSTAR(40种车辆型号、更具挑战的实际场景、数据公开、规模超过同类型数据集十倍),进行了详细性能评测。

在这里插入图片描述
在这里插入图片描述

结尾 遥感数据集汇总链接

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值