多重背包问题描述:
题目描述
有n种物品,小王有一个能装m千克的背包,想要装点物品回去。
每种物品,有自己的重量w(千克)和价值v(元),以及他们的数量c。
现在,物品的数量很大,而种类也不少。
请你计算出,背包装的最大价值。
输入
第一行是整数n(n<=100),m(m<=3000),表示物品的种类和背包容量。
接下来n行,每行3个数,w(w<=100),v(v<=100),c(c<=1000),表示重量,价值,和数量.
输出
一个数,表示最大价值。
样例输入
3 50
5 5 20
3 3 30
30 60 5
样例输出
80
多重背包问题相较于完全背包问题的区别在于:(完全背包问题参考前一篇文章)
多重背包的物品数量是有限的,且选择该物品后,剩余的重量不能小于0
多重背包问题的状态转移方程和完全背包问题的状态转移方程类似,只增加了:物品数量有限 这个限制条件
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXNUM = 102; //最大物品数
const int MAXCAPACITY = 3002; //背包的最大容量
int w[MAXNUM]; //物品i的重量
int v[MAXNUM]; //物品i的价值
int max_num[MAXNUM]; //物品i的最大数量
int f[MAXNUM][MAXCAPACITY]; //物品数量i,最大承重量为j的情况下的最大价值
void multiple_backpack(int n, int m)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (w[i] > j)
{
f[i][j] = f[i - 1][j];
}
else
{
int max = f[i - 1][j];
for (int k = 0; k <= max_num[i] && (j - w[i] * k) >= 0; k++) //物品的数量不能大于它的最大数量
{
if (f[i - 1][j - w[i] * k] + v[i] * k > max)
{
max = f[i - 1][j - w[i] * k] + v[i] * k;
}
}
f[i][j] = max;
}
}
}
printf("%d\n", f[n][m]);
}
int main()
{
int n, m;
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++)
{
scanf("%d %d %d", &w[i], &v[i], &max_num[i]);
}
multiple_backpack(n, m);
return 0;
}