Python数据分析之股票双均线策略制定

本文介绍了使用Python进行股票数据分析,特别是双均线策略的制定。通过计算5日和30日移动平均线,分析金叉和死叉,探讨基于这些信号的买入和卖出策略,并模拟了从2010年开始的投资收益率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python数据分析之股票双均线策略制定

需求:双均线策略制定

tushare包

预处理数据

df = pd.read_csv('./maotai.csv').drop(labels='Unnamed: 0', axis=1)
# 将date列转为时间序列且将其作为原数据的行索引
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)

均线的计算分析

  • 计算该股票历史数据的5日均线和30日均线
    • 什么是均线?
      • 对于每一个交易日,都可计算出前N天的移动平均值,然后把这些移动平均值连起来成为一条线,就叫做N日移动平均线。常用线有5天、10天、30天、60天、120天和240天的指标。
        • 5天和10天的是短线操作的参照指标,称作日均线指标
        • 30天和60天的是中期均线指标,称作季均线指标
        • 120天和240天的是长期均线指标,称作年均线指标
    • 均线计算方法:MA=(C1+C2+C3+…+Cn)/N,C:某日收盘价 N:移动平均周期(天数)
ma5 = df['close'].rolling(5).mean()  # 五日均值线
ma30 = df
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值