矩阵分析与应用(9)

学习来源:《矩阵分析与应用》张贤达 清华大学出版社

Moore-Penrose 逆矩阵

        令 P_s 表示到向量空间 S 上的正交投影,即对任意向量 x ,有 P_sx 在空间 S 上,而 x-P_sx 与子空间 S 正交。对于任意一个 m\times n 复矩阵 G ,令 Range(G) 表示 G 的值域空间。Moore 证明了矩阵 G 的广义逆矩阵 G^\dagger 必须满足条件

GG^\dagger =P_{Range(G)},\quad G^\dagger G=P_{Range(G^H)}

上述两个条件称为 Moore 条件,满足 Moore 条件的矩阵 G^\dagger 称为矩阵 G 的Moore 逆矩阵。由于上述条件不方便使用, Penrose 提出了定义广义逆矩阵的另外一组条件。

1. 定义

        令 A 是任意 m\times n 矩阵,若 G 满足以下四个条件:

1)AGA=A

2)GAG=G

3)AG 为 Hermitian 矩阵,即 (AG)^H=AG

4)GA 为 Hermitian矩阵,即 (GA)^H=GA

则称矩阵 G 是 A 的广义逆矩阵。

随后,Rado 证明了 Penrose 的定义与 Moore 的定义等价。

2. 分类

        根据满足 Moore-Penrose 四个条件的多少,对广义逆矩阵进行分类:

① 只满足条件 1)和 2)的矩阵 G=A^\dagger 称为 A 的自反广义逆矩阵。

② 满足条件 1), 2)和 3)的矩阵 A^\dagger 称为 A 的正规化广义逆矩阵。

③ 满足条件 1), 2)和 4)的矩阵 A^\dagger 称为 A 的弱广义逆矩阵。

④ 满足全部四个条件的矩阵 A^\dagger 称为 A 的Moore-Penrose 逆矩阵。

3. 一般广义逆矩阵

        若 A^g 是矩阵 A 的任意一种广义逆矩阵,则

rank(A^g)\geqslant rank(A)=rank(A^gA)=rank(AA^g)

        秩 rank(A^g)=rank(A) 的一个充要条件是 A^g 是矩阵 A 的自反广义逆矩阵。

        若 A 和 B 是使得矩阵乘积 AB 存在的任意矩阵,则 (AB)^\dagger =B^\dagger A^\dagger 的充要条件为以下四个条件之一:

1) A^\dagger ABB^HA^H=BB^HA^H 和 BB^\dagger A^HAB=A^HAB

2) A^\dagger ABB^H 和 A^HABB^\dagger 分别是 Hermitian 矩阵

3)A^\dagger ABB^HA^HABB^\dagger=BB^HA^HA 

4)A^\dagger AB=B(AB)^\dagger AB 且 BB^\dagger A^H=A^HAB(AB)^\dagger 

4. Moore−Penrose 逆矩阵 A^\dagger 的性质

1)广义逆矩阵 A^\dagger 是唯一的。

2)矩阵共轭转置的广义逆矩阵等于广义逆矩阵的共轭转置,即

(A^H)^\dagger= (A^\dagger )^H=A^{\dagger H}=A^{H\dagger}

3)广义逆矩阵的广义逆矩阵为原矩阵,即 (A^\dagger)^\dagger=A

4)若 c\neq 0 ,则 (cA)^\dagger=\frac{1}{c}A^\dagger

5)向量 x 的 Moore-Penrose 逆矩阵为 x^\dagger =(x^Hx)^{-1}x^H

6)任意矩阵 A_{m\times n} 的广义逆矩阵都可以由 A^\dagger=(A^HA)^\dagger A^H 或 A^\dagger =A^H(AA^H)^\dagger 确定。特别的,满秩矩阵的广义逆矩阵如下:

① 若 A 列满秩,则 A^\dagger=(A^HA)^{-1}A^\dagger 。

② 若 A 行满秩,则 A^\dagger =A^H(AA^H)^{-1} 。

③ 若 A 为非奇异矩阵,则 A^\dagger = A^{-1} 。

7)若 A=BC ,且 B 列满秩, C 行满秩,则

A^dagger =C^\dagger B^\dagger=C^H(CC^H)^{-1}(B^HB)^{-1}B^H

8)若 A^H=A ,且 A^2=A ,则 A^\dagger =A 。

9)若矩阵 A_i 相互正交,即 A_i^HA_j=O,i\neq j ,则

(A_1+A_2+\cdots+A_m)^\dagger=A_1^\dagger+A_2^\dagger +\cdots +A_m^\dagger

10)(AA^H)^\dagger =(A^\dagger)^HA^\dagger 。

11)(AA^H)^\dagger (AA^H)=AA^\dagger 。

12)若 AA^H=A^HA ,则 (A^m)^\dagger =(A^\dagger)^m 。

13)对于广义逆矩阵的秩,有

                                 rank(A^\dagger )=rank(A)=rank(A^H)=rank(A^\dagger A)

                                                  =rank(AA^\dagger)=rank(AA^\dagger A)=rank(A^\dagger AA^\dagger)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值