矩阵分析与应用(13)

学习来源:《矩阵分析与应用》 张贤达 清华大学出版社

Kronecker 积

1. 矩阵化函数和向量化函数

        矩阵与向量之间存在相互转换的函数。

        定义:一个 mn\times 1 向量 a=[a_1,a_2,\cdots ,a_{mn}]^T 的矩阵化函数 unvec_{m,n} 是一个将 mn 个元素的列向量转换为 m\times n 矩阵的算子,即

unvec_{m,n}(a)=A_{m\times n}=\begin{bmatrix} a_1 & a_{m+1} & \cdots & a_{m(n-1)+1}\\ a_2& a_{m+2}& \cdots & a_{m(n-1)+2}\\ \vdots & \vdots & &\vdots \\ a_m & a_{2m}& \cdots & a_{mn} \end{bmatrix} 

相反的,若 A=[a_{ij}] 是一个 m\times n 矩阵,则 A 的向量化函数 vec(A) 是一个 mn\times 1 向量,其元素是 A 的元素的字典式排列,即

vec(A)=\begin{bmatrix} a_{11}\\ \vdots \\ a_{m1}\\ \vdots \\ a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} 

矩阵元素的字典式排列也称按列堆栈。

        根据定义,矩阵化算子和向量化算子有以下关系:

unvec_{m,n}(a)=A_{m\times n} \quad \Rightarrow \quad vec(A_{m\times n})=a 

        矩阵也可以按行堆栈为行向量,称为矩阵的行向量化,用符号 rvec(A) 表示,定义为:

rvec(A)=[a_{11},\cdots ,a_{1n},\cdots ,a_{m1},\cdots ,a_{mn}] 

由于矩阵的向量化结果为列向量,行向量化结果为行向量,所以矩阵的向量化和行向量化之间存在以下关系:

rvec(A)=(vec(A^T))^T ,\quad vec(A^T)=(rvec(A))^T

2. Kronecker 积

        Kronecker 积是表示矩阵特殊乘积的一种简洁数学符号。一个 m\times n 矩阵 A 和一个 p\times q 矩阵 B 的 Kronecker 积记作 A\otimes B ,它是一个 mp\times nq 矩阵。

        定义 1 : m\times n 矩阵 A 和 p\times q 矩阵 B 的右 Kronecker 积 A\otimes B 定义为

A\otimes B=[a_{ij}B]=\begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B\\ a_{21}B & a_{22}B& \cdots &a_{2n}B \\ \vdots & \vdots & &\vdots \\ a_{m1}B& a_{m2}B &\cdots & a_{mn}B \end{bmatrix} 

        定义 2 :  m\times n 矩阵 A 和 p\times q 矩阵 B 的左 Kronecker 积 A\otimes B 定义为

[A\otimes B]_{left}=[Ab_{ij}]=\begin{bmatrix} Ab_{11} & Ab_{12} & \cdots & Ab_{1q}\\ Ab_{21} & Ab_{22}& \cdots &Ab_{2q} \\ \vdots & \vdots & &\vdots \\ Ab_{p1}&Ab_{p2} &\cdots & Ab_{pq} \end{bmatrix} 

Kronecker 积也称直积或张量积。

        Kronecker 积的性质:

1)若矩阵 A_{m\times n}=ab^T ,则

vec(ab^T)=b\otimes a

2)若 A,B,C 为 m\times p,\quad p\times q,\quad q\times n 矩阵,则

vec(ABC)=(C^T\otimes A)v ec(B)

3)对于矩阵 A_{m\times n} 和 B_{p\times q} ,一般 A\otimes B\neq B\otimes A 。

4)任意矩阵与零矩阵的 Kronecker 积为零矩阵。

5)若 \alpha 和 \beta 为常数,则

\alpha A\otimes \beta B=\alpha \beta (A\otimes B) 

6)对于矩阵 A_{m\times n},B_{n\times k},C_{l\times p},D_{p\times q} ,有

AB\otimes CD=(A\otimes C)(B\otimes D)

7)对于矩阵 A_{m\times n},B_{p\times q},C_{p\times q} ,有

A\otimes (B\pm C)=A\otimes B\pm A\otimes C

(B\pm C)\otimes A=B\otimes A\pm C\otimes A

8)若矩阵 A 和 B 分别有广义逆矩阵 A^\dagger 和 B^\dagger ,则

(A\otimes B)^\dagger =A^\dagger \otimes B^\dagger

特别的,若 A 和 B 是可逆的正方矩阵,则

(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}

9)对于矩阵 A_{m\times n},B_{p\times q} ,有

(A\otimes B)^T=A^T\otimes B^T

(A\otimes B)^H=A^H\otimes B^H

10)对于矩阵 A_{m\times n},B_{p\times q} ,有

rank(A\otimes B)=rank(A)rank(B)

11)若 A 是  m\times m 矩阵, B 是 n\times n 矩阵,则

det(A\otimes B)=(det(A))^n(det(B))^m

12)若 A 是  m\times m 矩阵, B 是 n\times n 矩阵,则

tr(A\otimes B)=tr(A)tr(B)

13)对于矩阵 A_{m\times n},B_{m\times n},C_{p\times q},D_{p\times q} ,有

(A+B)\otimes (C+D)=A\otimes C+A\otimes D+B\otimes C+ B \otimes D

14)对于矩阵 A_{m\times n},B_{k\times l},C_{p\times q},D_{r\times s} ,有

(A\otimes B)\otimes (C\otimes D)=A\otimes B\otimes C\otimes D

15)若 \alpha_i 是矩阵 A 与特征值 \lambda_i 对应的特征向量,\beta_i 是矩阵 B 与特征值 \mu_i 对应的特征向量,则 \alpha_i\otimes \beta_i 是矩阵 A\otimes B 的与特征值 \lambda_i\mu_i 对应的特征向量,也是与特征值 \lambda_i+\mu_i 对应的特征向量。

16)对于矩阵 A_{m\times n},B_{p\times q},C_{k\times l} ,有

(A\otimes B)\otimes C=A\otimes (B\otimes C)

即 A\otimes B \otimes C 的结果是无模糊的。

17)对于矩阵 A_{m\times n},B_{p\times q},C_{n\times r},D_{q\times s} ,有

(A\otimes B)(C\otimes D)=AC\otimes BD

18)对于矩阵 A_{m\times n},B_{p\times q} ,有

exp(A\otimes B)=exp(A)\otimes exp(B)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值