克罗内克积

克罗内克积

定义

克罗内克积(Kronecker Product),记作 A ⊗ B A \otimes B AB,是两个矩阵 A A A B B B 之间的一种矩阵运算。给定一个 m × n m \times n m×n 矩阵 A A A 和一个 p × q p \times q p×q 矩阵 B B B,它们的克罗内克积是一个 m p × n q mp \times nq mp×nq 矩阵。此运算是通过取矩阵 A A A 的每个元素 a i j a_{ij} aij 与矩阵 B B B 相乘,产生矩阵块来构造最终的矩阵。

例子

考虑以下两个矩阵:

A = [ a 11 a 12 a 21 a 22 ] , B = [ b 11 b 12 b 21 b 22 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} A=[a11a21a12a22],B=[b11b21b12b22]

它们的克罗内克积 A ⊗ B A \otimes B AB 将是:

A ⊗ B = [ a 11 b 11 a 11 b 12 a 12 b 11 a 12 b 12 a 11 b 21 a 11 b 22 a 12 b 21 a 12 b 22 a 21 b 11 a 21 b 12 a 22 b 11 a 22 b 12 a 21 b 21 a 21 b 22 a 22 b 21 a 22 b 22 ] A \otimes B = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix} AB= a11b11a11b21a21b11a21b21a11b12a11b22a21b12a21b22a12b11a12b21a22b11a22b21a12b12a12b22a22b12a22b22

特性

克罗内克积具有以下特性:

  1. 非交换性:一般情况下 A ⊗ B ≠ B ⊗ A A \otimes B \neq B \otimes A AB=BA
  2. 结合性 ( A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C ) (A \otimes B) \otimes C = A \otimes (B \otimes C) (AB)C=A(BC)
  3. 分配性 A ⊗ ( B + C ) = A ⊗ B + A ⊗ C A \otimes (B + C) = A \otimes B + A \otimes C A(B+C)=AB+AC
  4. 混合积性质:如果矩阵 A , C A, C A,C 和矩阵 B , D B, D B,D 都是可乘的,则有 ( A ⊗ B ) ( C ⊗ D ) = ( A C ) ⊗ ( B D ) (A \otimes B)(C \otimes D) = (AC) \otimes (BD) (AB)(CD)=(AC)(BD)

矩阵方程

在矩阵方程中,克罗内克积可以用来简化某些类型的方程组。例如,对于方程 A X B T = C AXB^T = C AXBT=C 其中 A , B A, B A,B X X X 是矩阵,我们可以用克罗内克积来表示这个方程组的向量化形式:

vec ( A X B T ) = ( B ⊗ A ) vec ( X ) = vec ( C ) \text{vec}(AXB^T) = (B \otimes A)\text{vec}(X) = \text{vec}(C) vec(AXBT)=(BA)vec(X)=vec(C)

其中 vec ( ⋅ ) \text{vec}(\cdot) vec() 是向量化操作, I I I 是恰当大小的单位矩阵。

历史

克罗内克积以19世纪的德国数学家利奥波德·克罗内克命名,他在数学的多个领域,包括代数学、数论和矩阵理论中都有贡献。

参考资料

  • Horn, R.A. & Johnson, C.R. (2013). Matrix Analysis. Cambridge University Press.
  • Bellman, Richard (1987). Introduction to Matrix Analysis (2nd ed.). SIAM.
  • 16
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值