矩阵分析与应用(15)

学习来源:《矩阵分析与应用》张贤达 清华大学出版社

QR分解及应用

1. QR分解的性质

        定理1(QR分解):若 A\in R^{m\times n} ,且 m\geqslant n ,则存在列正交的矩阵 Q\in R^{m\times m} 和上三角矩阵 R\in R^{m\times n} 使得 A=QR 。当 m=n 时, Q 是正交矩阵。如果 A 是非奇异的 n\times n 矩阵,则 R 的所有对角线元素均为正,且此时 Q 和 R 是唯一的。若 A 是复矩阵,则 Q 和 R 取复值。

        引理1:若 A 和 B 是任意两个 m\times n 矩阵,则

A^HA=B^HB

当且仅当存在一个 m\times m 酉矩阵 Q 使得

QA=B

2. 基于 Gram-Schmidt 方法的 QR 分解

        Gram-Schmidt 正交化方法是一种由 n 个向量 a_1,a_2,\cdots ,a_n 构造相互正交且范数为 1 的向量 q_1,q_2,\cdots ,q_n 的方法。将向量 a_1 标准正交化的结果取作 q_1 ,即

\left\{\begin{matrix} R_{11}=\left \| a_1 \right \|\\ q_1=q_1/R_{11} \end{matrix}\right.

然后,从 a_2 中去掉与 a_1 平行的分量,再进行标准正交化,并将结果取作 q_2 ,则有

\left\{\begin{matrix} R_{12}=q_1^Ha_2\\ R_{22}=\left \| a_2-q_1R_{12} \right \| \\ q_2=(a_2-q_1R_{12})/R_{22} \end{matrix}\right. 

进而,又从 a_3 中去掉与 a_1 和 a_2 平行的两个分量,再进行标准正交化,并使用该结果作为 q_3 ;以此类推,对于 q_k(2\leqslant k\leqslant n) 有

\left\{\begin{matrix} R_{jk}=q_j^Ha_k,\quad 1\leqslant j\leqslant k-1\\ R_{kk}=\left \| a_k-\sum_{j=1}^{k-1}q_jR_{jk} \right \|\\ q_k=(a_k-\sum_{j=1}^{k-1}q_jR_{jk})/R_{kk} \end{matrix}\right.

其中,q_i 是标准正交基,即

q_i^Hq_j=\delta_{ij}

而 \delta_{ij} 是 Kronecker \delta 函数,含义为

\delta_{ij}=\left\{\begin{matrix} 1\quad ,i=j\\ 0\quad ,i\neq j \end{matrix}\right.

        若令 m\times n 矩阵 A 的列向量为 a_1,a_2,\cdots ,a_n ,则以 q_1,q_2,\cdots ,q_n 为列向量的矩阵 Q 与 A 之间有以下关系

A=QR

又由于 q_i 是标准正交基,所以

Q^HQ=I_n

以上求解矩阵 QR 分解的方法叫做经典 Gram-Schmidt 正交化法。

3. 例

        利用经典 Gram-Schmidt 正交化法求矩阵 A 的 QR 分解,其中,

A=\begin{bmatrix} 0 & 3 &1 \\ 0& 4& -2\\ 2&1 &2 \end{bmatrix}

设 x_1=[0,0,2]^T,x_2=[3,4,1]^T,x_3=[1,-2,2]^T ,易知 x_1,x_2,x_3 线性无关。

将 x_1,x_2,x_3 正交化:

                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​y_1=x_1=[0,0,2]^T 

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​y_2=x_2-\frac{(x_2,y_1)}{(y_1,y_1)}y_1=x_2-\frac{1}{2}y_1=[3,4,0]^T

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​y_3=x_3-\frac{(x_3,y_1)}{(y_1,y_1)}y_1-\frac{(x_3,y_2)}{(y_2,y_2)}y_2=x_3-y_1+\frac{1}{5}y_2=[\frac{8}{5},-\frac{6}{5},0]^T

再单位化

                                        q_1=\frac{1}{2}y_1=[0,0,1]^T

                                        q_2=\frac{1}{5}y_2=[\frac{3}{5},\frac{4}{5},0]^T

                                        q_3=\frac{1}{2}y_3=[\frac{4}{5},-\frac{3}{5},0]^T

所以

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        x_1=y_1=2q_1

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        x_2=\frac{1}{2}y_1+y_2=q_1+5q_2

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        x_3=y_1-\frac{1}{5}y_2+y_3=2q_1-q_2+2q_3

最终矩阵 A 的 QR 分解为:

A=QR=\begin{bmatrix} 0 & \frac{3}{5} &\frac{4}{5} \\ 0& \frac{4}{5}&-\frac{3}{5} \\ 1&0 &0 \end{bmatrix}\begin{bmatrix} 2 &1 &2 \\ 0& 5 & -1\\ 0 &0 &2 \end{bmatrix}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值