学习来源:《矩阵分析与应用》张贤达 清华大学出版社
QR 分解及其应用
1. Householder QR 分解
Householder 变换可以实现任意 矩阵 的 QR 分解,原理是通过 Householder 变换可以使向量除第一个元素外,其它元素都变成 0 。
Householder 变换:欲使一个 维向量 的第 1 个元素后面的所有元素为 0 ,则 维的 Householder 向量应取
(1)
其中,
(2)
假设 矩阵 的列分块形式为
首先令 ,并取 ,按照式(1)和式(2)可以计算得到 。此时,
变换后矩阵 的第 1 列 的第一个元素为 ,而该列的其它元素全为 0 。
然后对矩阵 的第 2 列 ,令 和 再次按照式(1)和式(2)求得 维向量 。此时,取 得到
变换后矩阵 的第 1 列与 的第 1 列相同,而第 2 列 的第一个元素为 ,第二个元素为 ,该列的其它元素全为 0 。
以此类推,经过 次 Householder 变换后,得到
变换形式得到
其中, 为上三角矩阵。令 ,又 为 Householder 变换,即有性质 ,所以 ;令 , 即实现了矩阵 的 QR 分解。
2. 例
利用 householder 变换求矩阵 的 QR 分解。
因为 ,记 ,令
所以
记 ,则 ,令
所以
取 ,则 。