opencv教程

 

注明:非原创,请不要转载,谢谢!

OpenCV-day-001. [图像读取与显示](https://t.zsxq.com/auvvV3f )

OpenCV-day-002. [图像色彩空间转换](https://t.zsxq.com/rrvNnI2 )

OpenCV-day-003. [图像对象的创建与赋值](https://t.zsxq.com/YjM3BUV )

OpenCV-day-004. [图像像素的读写操作](https://t.zsxq.com/Ybyb2bU )

OpenCV-day-005. [图像像素的算术操作](https://t.zsxq.com/u3Jam6y )

OpenCV-day-006. [LUT的作用与用法](https://t.zsxq.com/7yBEaIe )

OpenCV-day-007. [图像像素的逻辑操作](https://t.zsxq.com/ZbYnmMJ )

OpenCV-day-008. [通道分离与合并](https://t.zsxq.com/qZfQzf2 )

OpenCV-day-009. [图像色彩空间转换](https://t.zsxq.com/M3zVbaQ )

OpenCV-day-010. [图像像素值统计](https://t.zsxq.com/2vJYzRv )

OpenCV-day-011. [像素归一化](https://t.zsxq.com/UZnUrfm )

OpenCV-day-012. [视频文件的读写](https://t.zsxq.com/NBYzNJq )

OpenCV-day-013. [图像翻转](https://t.zsxq.com/BQ7EmUj )

OpenCV-day-014. [图像插值](https://t.zsxq.com/ZzfIEur )

OpenCV-day-015. [几何形状绘制](https://t.zsxq.com/FQnMjam )

OpenCV-day-016. [图像ROI与ROI操作](https://t.zsxq.com/zJuvVzJ )

OpenCV-day-017. [图像直方图](https://t.zsxq.com/nqR3Rvn )

OpenCV-day-018. [图像直方图均衡化](https://t.zsxq.com/nUr3BaI )

OpenCV-day-019. [图像直方图比较](https://t.zsxq.com/Vz3nEYJ )

OpenCV-day-020. [图像直方图反向投影](https://t.zsxq.com/v7MjEiu )

OpenCV-day-021. [图像卷积操作](https://t.zsxq.com/IAyRvB2 )

OpenCV-day-022. [图像均值与高斯模糊](https://t.zsxq.com/BURFM7Y )

OpenCV-day-023. [中值模糊](https://t.zsxq.com/y3z33vN )

OpenCV-day-024. [图像噪声](https://t.zsxq.com/6EQRjmq )

OpenCV-day-025. [图像去噪声](https://t.zsxq.com/2FEqRzN )

OpenCV-day-026. [高斯双边模糊](https://t.zsxq.com/iUVb2RZ )

OpenCV-day-027. [均值迁移模糊](https://t.zsxq.com/Nf2RNrZ )

OpenCV-day-028. [图像积分图算法](https://t.zsxq.com/AiEe2ZV )

OpenCV-day-029. [快速的图像边缘滤波算法](https://t.zsxq.com/f2NfUnA )

OpenCV-day-030. [OpenCV自定义的滤波器](https://t.zsxq.com/3J2BAYr )

OpenCV-day-031. [图像梯度–Sobel算子](https://t.zsxq.com/YZZRjQ3 )

OpenCV-day-032. [图像梯度–更多梯度算子](https://t.zsxq.com/amYRBQz )

OpenCV-day-033. [图像梯度–拉普拉斯算子]((https://t.zsxq.com/BYBEAQb )

OpenCV-day-034. [图像锐化](https://t.zsxq.com/jiaM7eA )

OpenCV-day-035. [USM锐化增强算法](https://t.zsxq.com/7UNvJyB )

OpenCV-day-036. [Canny边缘检测器](https://t.zsxq.com/RRr7mMB )

OpenCV-day-037. [图像金字塔](https://t.zsxq.com/N7iiMRf )

OpenCV-day-038. [拉普拉斯金字塔](https://t.zsxq.com/fUrzZfq )

OpenCV-day-039. [图像模板匹配](https://t.zsxq.com/2fEIMrJ )

OpenCV-day-040. [二值图像介绍](https://t.zsxq.com/RR33VBe )

OpenCV-day-041. [OpenCV中的基本阈值操作](https://t.zsxq.com/R3jiAey )

OpenCV-day-042. [OTSU二值寻找算法](https://t.zsxq.com/Q3bMJIu )

OpenCV-day-043. [TRIANGLE二值寻找算法](https://t.zsxq.com/u7QFAM7 )

OpenCV-day-044. [自适应阈值算法](https://t.zsxq.com/i6IQfey )

OpenCV-day-045. [图像二值化与去噪](https://t.zsxq.com/7UZRVrb )

OpenCV-day-046. [二值图像联通组件寻找](https://t.zsxq.com/UVbEYrZ )

OpenCV-day-047. [二值图像连通组件状态统计](https://t.zsxq.com/mam2jiI )

OpenCV-day-048. [二值图像分析—轮廓发现](https://t.zsxq.com/ybEYVFU )

OpenCV-day-049. [二值图像分析—轮廓外接矩形](https://t.zsxq.com/7UJyJqV )

OpenCV-day-050. [二值图像分析 – 矩形面积与弧长](https://t.zsxq.com/2N7AujY ) 2019/4/17

OpenCV-day-051. [二值图像分析—使用轮廓逼近](https://t.zsxq.com/3biQZ33 )

OpenCV-day-052. [二值图像分析—用几何矩计算轮廓中心与横纵比过滤](https://t.zsxq.com/B2BAqji )

OpenCV-day-053. [二值图像分析—Hu矩实现轮廓匹配](https://t.zsxq.com/UbIyrbA )

OpenCV-day-054. [二值图像分析—对轮廓圆与椭圆拟合](https://t.zsxq.com/eujYbuN )

OpenCV-day-055. [二值图像分析—凸包检测](https://t.zsxq.com/7aIyjQJ )

OpenCV-day-056. [二值图像分析–直线拟合与极值点寻找](https://t.zsxq.com/AMvjMrB )

OpenCV-day-057. [二值图像分析—点多边形测试](https://t.zsxq.com/J2jAee6 )

OpenCV-day-058. [二值图像分析—寻找最大内接圆](https://t.zsxq.com/Vz3rzbE )

OpenCV-day-059. [二值图像分析—霍夫直线检测](https://t.zsxq.com/6Yv3NFq )

OpenCV-day-060. [二值图像分析—霍夫直线检测二](https://t.zsxq.com/ei6IMf6 )

OpenCV-day-061. [二值图像分析—霍夫圆检测](https://t.zsxq.com/YRnyznE )

OpenCV-day-062. [图像形态学—膨胀与腐蚀](https://t.zsxq.com/Jeyvjqn )

OpenCV-day-063. [图像形态学—膨胀与腐蚀](https://t.zsxq.com/BMz3vfu )

OpenCV-day-064. [图像形态学—开操作](https://t.zsxq.com/aeqZFUb )

OpenCV-day-065. [图像形态学—闭操作](https://t.zsxq.com/3b6qJQZ )

OpenCV-day-066. [图像形态学—开闭操作时候结构元素应用演示](https://t.zsxq.com/EQzFqB2 )

OpenCV-day-067. [图像形态学—顶帽操作](https://t.zsxq.com/URj27ae )

OpenCV-day-068. [图像形态学—黑帽操作](https://t.zsxq.com/6uZ376M )

OpenCV-day-069. [图像形态学—图像梯度](https://t.zsxq.com/3rJQbmA )

OpenCV-day-070. [形态学应用—用基本梯度实现轮廓分析](https://t.zsxq.com/Uvr3rBy )

OpenCV-day-071. [形态学操作—击中击不中](https://t.zsxq.com/vniEQ33 )

OpenCV-day-072. [二值图像分析—缺陷检测一](https://t.zsxq.com/yNN76YJ )

OpenCV-day-073. [二值图像分析—缺陷检测二](https://t.zsxq.com/eIMbmY3 )

OpenCV-day-074. [二值图像分析—提取最大轮廓与编码关键点](https://t.zsxq.com/yf6u33B )

OpenCV-day-075. [图像去水印/修复]( https://t.zsxq.com/EIUBIaA )

OpenCV-day-076. [图像透视变换应用](https://t.zsxq.com/QnyfmQR )

OpenCV-day-077. [视频读写与处理](https://t.zsxq.com/YrfUJ2r )

OpenCV-day-078. [识别与跟踪视频中的特定颜色对象](https://t.zsxq.com/AQ7UBie )

OpenCV-day-079. [视频分析—背景/前景提取](https://t.zsxq.com/baQbIa6 )

OpenCV-day-080. [视频分析—背景消除与前景ROI提取](https://t.zsxq.com/UfeAUNf )

OpenCV-day-081. [角点检测—Harris角点检测](https://t.zsxq.com/Z3jiYJa )

OpenCV-day-082. [角点检测—shi-tomas角点检测](https://t.zsxq.com/buVJAUV )

OpenCV-day-083. [角点检测—亚像素级别角点检测](https://t.zsxq.com/bAmi2Ba )

OpenCV-day-084. [视频分析—移动对象的KLT光流跟踪算法](https://t.zsxq.com/eeybEem )

OpenCV-day-085. [视频分析—KLT光流跟踪 02](https://t.zsxq.com/EqrJ2bU )

OpenCV-day-086. [视频分析—稠密光流分析](https://t.zsxq.com/nMjIQzn )

OpenCV-day-087. [视频分析—基于帧差法实现移动对象分析](https://t.zsxq.com/rRZNRzV )

OpenCV-day-088. [视频分析—基于均值迁移的对象移动分析](https://t.zsxq.com/bmM7ea6 )

OpenCV-day-089. [视频分析—基于连续自适应均值迁移的对象移动分析](https://t.zsxq.com/IaEUnYF )

OpenCV-day-090. [视频分析—对象移动轨迹绘制](https://t.zsxq.com/RjYRFQV )

OpenCV-day-091. [对象检测—HAAR级联检测器使用](https://t.zsxq.com/RBMVvbA )

OpenCV-day-092. [对象检测—HAAR特征介绍](https://t.zsxq.com/b2fAIuV )

OpenCV-day-093. [对象检测—LBP特征介绍](https://t.zsxq.com/amIMnuz )

OpenCV-day-094. [ORB FAST特征关键点检测](https://t.zsxq.com/aQByrZB )

OpenCV-day-095. [BRIEF特征描述子 匹配](https://t.zsxq.com/nIEmQB6 )

OpenCV-day-096. [描述子匹配](https://t.zsxq.com/vRFi6Ie )

OpenCV-day-097. [基于描述子匹配的已知对象定位](https://t.zsxq.com/mq7aQfy )

OpenCV-day-098. [SIFT特征提取—关键点提取](https://t.zsxq.com/VRrN7AM )

OpenCV-day-099. [SIFT特征提取—描述子生成](https://t.zsxq.com/6MJYN7A )

OpenCV-day-100. [HOG特征与行人检测](https://t.zsxq.com/jm6MJQV )

OpenCV-day-101. [HOG特征描述子—多尺度检测](https://t.zsxq.com/UNZvZ7i )

OpenCV-day-102. [HOG特征描述子—提取描述子](https://t.zsxq.com/6qzvJAU )

OpenCV-day-103. [HOG特征描述子—使用描述子特征生成样本数据](https://t.zsxq.com/JAAqBYv )

OpenCV-day-104. [SVM线性分类器](https://t.zsxq.com/AyZNZN7 )

OpenCV-day-105. [HOG特征描述子—使用HOG进行对象检测](https://t.zsxq.com/NJyZvB2 )

OpenCV-day-106. [AKAZE特征与描述子](https://t.zsxq.com/ZVznUV3 )

OpenCV-day-107. [Brisk特征提取与描述子匹配](https://t.zsxq.com/EAyNBIy )

OpenCV-day-108. [特征提取之关键点检测—GFTTDetector](https://t.zsxq.com/UBQBIQj )

OpenCV-day-109. [BLOB特征分析—simpleblobdetector使用](https://t.zsxq.com/VFM3vZ3 )

OpenCV-day-110. [KMeans 数据分类](https://t.zsxq.com/vnU7eIA

 

OpenCV是一个广受欢迎的开源计算机视觉库 是一个广受欢迎的开源计算机视觉库 ,它提供了 很多函数,实现很多计算机视觉法,从最基本的 滤波到高级物体检测 皆有涵盖 。很多 初学者希望快速掌握 OpenCV OpenCV OpenCVOpenCV的使用方法 ,但 往会 遇到 各种样的困难。 其 实仔细分析,造成这些困难的原因 有两类:第一是 C/C++/C++/C++/C++编程基础不过关; 第二类是不了解算法原理。 解决 这些 困难无非提升编程能力,以及理论基 础知识。 提升编程能力需要多练习,理论知识系统学《数字图 像处理》、《计算机视觉和模式识别等课程,所有这些都不 像处理》、《计算机视觉和模式识别等课程,所有这些都不 像处理》、《计算机视觉和模式识别等课程,所有这些都不 能一蹴而就 , 需要耐下心来认真修炼。 同时我们也 需要 认识到 OpenCV OpenCV OpenCVOpenCV只是一个算法库, 只是一个算法库, 能为我们搭建计算机视觉 应用提供“砖头”。我们并不需要完全精通了算法原理 应用提供“砖头”。我们并不需要完全精通了算法原理 之后 才去使用 OpenCV OpenCV OpenCVOpenCV, 只要了解“砖头”的功能,就可以动手。在实践中学习 才是最高效的学习 方式。 本小册子希望为初学者提供引导,使快速了解 OpenCV OpenCV OpenCVOpenCV的基本数 据结构以及用法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值