图像质量评估IQA--Jongyoo Kim的三个Image Quality Assessment

或许倒着看效果更好……

1、Deep CNN-Based Blind Image Quality Predictor

1) predict the objective error map,

Image Normalization:A Gaussian low-pass filter and subsampling (下采样1/4再上采样回去)(原因:低频很难失真,HSV对低频不敏感。)

,loss忽视边界4行4列。

ground-truth objective error map:p = 0.2,数据分布大于0。

根据内容判断预测的Reliability Map Prediction可靠性:实验a = 1.0最佳。

2) predict subjective score

additional handcrafted features: 归一化后的u和std 。
.

实验:In the experiment with the LIVE IQA database, the patch size was 112 × 112 and each step was 80 × 80.

epoch、Reliability Map(r)、Image Normalization 、Handcrafted Features、Proxy Training Targets(FR第一阶段的学习目标)、Performance on Individual Databases 、 Performance on Individual Distortion Types 、Cross Data Set Test

PS:最后提出了一个DIQA-SENS:引入视觉敏感性。distorted image, its objective error map, and its ground-truth subjective score 三个输入,label 是质量分数。即使用第一阶段的网络加一层全连接回归分数得到sensitivity map(中间还有一个相乘)。得到predicts local visual weights of the objective error map (权重)

2、Deep Learning of Human Visual Sensitivity in Image Quality Assessment Framework

   感觉上篇的DIQA-SENS可能是这篇的升级版。整体结构也与上篇差不多,但是这篇是FR,或许应该先看这篇的,上篇应该是这篇想法的进化。

a)Image Normalization:灰度图归一化到(0,1)

b)ground-truth objective error map:,作者称之为sensitivitymap

c)得到sensitivity map后,与下采样1/4的error map矩阵相乘得到P,作者称之为perceptual error map

d)然后,两层全连接得到score。

PS:在loss中加了对sensitivity map的L2正则化项,惩罚高频。

实验:正则化项权重,e and sensitivitymap and perceptual error map不同失真和同一失真不同程度的图像对比,结果比对,以及Cross Dataset Test。感觉作者的实验比我的严谨又全面多了。

3、Fully Deep Blind Image Quality Predictor

感觉这篇才是最开始。。。。

惯例开始,发现data数据不足,怎么办呢,patch-wise,又没有patch的label,怎么办呢,研究工作就此展开。

step 1:用SSIM 、GMS 、FSIM and VSI获取patch label作为中间目标。

step 2:在进过1训练的网络上将1扩展到Nm

我觉得我理解的优点偏差,只能贴原文自行体会,,这原文贴的太不容易了。

in Step 1, the CNN is trained for each patch  and regressed onto the local metric score

In Step 2, the CNN is trained using the patches of an image  and is pooled to the subjective score where Nm is the number of patches in the mth image

其中,N到2用的是u和std。

实验:Performances comparison(fsim)、1 epoches、4个FR使用比较、Cross dataset test、Effect of patch size、Predicted local metric score visualization等一系列,,太全面了。但是好像最后一个实验才用神奇的MFSIMC,为什么第一个不用呢,,只有图,,不应该有它的结果数据吗,

倒着看其实能get作者的大概想法,一直在寻找中间目标的路上不断探索……

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
### 回答1: iqa-nima是一种针对图像质量评估的深度学习算法,利用神经网络自动学习图像质量的特征,可以准确地评估图像质量。该算法是基于NIMA(Neural Image Assessment)算法的改进版本,增加了对ISO等其他图像质量因素的考虑。 iqa-nima算法主要包括两个部分:训练阶段和测试阶段。在训练阶段,算法利用已有的高质量图像和对应的主观评价分数训练神经网络,学习图像质量的特征。在测试阶段,通过输入待评估图像,经过神经网络计算得到图像质量分数,从而进行图像质量评估iqa-nima算法采用了效率较高的ResNet架构作为神经网络,在训练阶段引入了数据增强和随机扰动等策略,提高了算法的鲁棒性。在测试阶段,算法还提供了集成多个神经网络的选项,可以进一步提高评估结果的准确性。 总的来说,iqa-nima是一种高效准确的图像质量评估算法,可以广泛应用在图像处理和计算机视觉等领域。 ### 回答2: iqa-nima是一种用于评估图像质量的算法。它基于神经网络,并利用了自然图像的统计规律来预测图像质量iqa-nima的全称是“Natural Image Quality Evaluator using Multi-scale Spatial and Spectral Features with Gradient Boosting Machine”。与其他传统的图像质量评估算法相比,iqa-nima具有较高的精度和鲁棒性。在实际应用中,iqa-nima可以用于图像压缩、图像增强、图像复原等场景中,用于判断图像质量改变的程度。iqa-nima的实现过程主要包括图像预处理(将输入图像转换为多尺度和多频段的特征图)、特征提取(利用CNN从特征图中提取空间和频谱特征)、训练模型(采用GBM,构建回归模型进行参数学习和预测)和评估图像质量(将图像输入模型进行预测)。iqa-nima的代码较为复杂,需要深入掌握图像处理、机器学习等相关领域的知识。 ### 回答3: iqa-nima 是一种基于神经网络的图像质量评价算法。该算法使用了深度神经网络模型来学习图像质量的特征,然后预测图像质量分数。iqa-nima 算法的主要特点是高精度和高效率。与传统的基于数学模型的评价方法相比,它能够更加准确地评估图像质量iqa-nima 算法的核心思想是将图像转化为特征向量,然后再将特征向量输入到神经网络模型中进行学习和预测。该模型采用了一种叫做残差模块的结构,使得模型具有更好的拟合能力和泛化能力,从而提高了模型的预测结果的准确性。 此外,iqa-nima 算法还使用了一种特殊的损失函数,称为对比损失函数。该损失函数能够引导模型学习到图像质量的一些高级特征,从而提高了模型的鲁棒性和可靠性。在训练阶段,模型需要学习尽可能地准确地预测每张图像质量,而在测试阶段,模型可以对新的图像进行评价和预测,从而提供更加准确的结果。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值