TensorFlow2.0笔记(六)——用RNN实现连续数据的预测

北大MOOC——TF2.0笔记

以下是我的听课笔记,供以后回忆(大多内容来自ppt)

1.循环核

有些数据与时间序列相关,是可以根据上文预测出下文的。通过脑记忆体(循环核)提取历史数据的特征,预测出接下来最可能发生的情况。

循环核(记忆体):循环核具有记忆力,通过不同时刻的参数共享,实现了对时间序列的信息提取。

循环核:可以设置记忆体的个数改变记忆容量。当记忆容量、输入xt、输出yt维度被指定,周围这些待训练参数的维度也就被限定了。
前向传播时:记忆体内存储着每个时刻的状态信息ht ,在每个时刻都被刷新,三个参数矩阵wxh、whh、why自始至终都是固定不变的。
反向传播时:三个参数矩阵wxh、whh、why被梯度下降法更新

yt就是一个全连接网络

2. 循环核按时间步展开

按时间步展开,就是把循环核按照时间轴方向展开,每个时刻记忆体状态信息ht被刷新,记忆体周围的参数矩阵wxh、whh、why是固定不变的,我们训练优化的就是这些参数矩阵,训练完成后,使得效果最好的参数矩阵执行前向传播,输出预测结果。

这与人类是相似的,人们脑中的记忆体是随当前的输入而更新的,当前的预测推理是根据以往的知识积累,用固化下来的参数矩阵进行推理判断的。

循环神经网络:借助循环核时间特征提取后,送入全连接网络。

yt是整个循环网络的末层,从公式来看就是一个全连接网络,借助全连接网络,实现连续数据预测。

3.循环计算层

每个循环核构成一层循环计算层。

循环计算层的层数是向输出方向增长的。

4.TF描述循环计算层

tf.keras.layers.SimpleRNN(记忆体个数,activation=‘激活函数’ , return_sequences=是否每个时刻输出ht到下一层)

activation=‘激活函数’ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值