2021-08 集成学习打卡Task01:数学基础

这篇博客回顾了机器学习中的数学基础知识,重点讲解了概率论中的常见分布,包括二项分布、正态分布、泊松分布、伽马分布和Tweedie分布。Tweedie分布作为泊松和伽马的复合,适用于处理长尾数据,如电商销量预测。文中还提及了根据数据分布选择合适损失函数的重要性。
摘要由CSDN通过智能技术生成

Task01 数学基础

学习地址

介绍

这部分内容主要复习一下机器学习以及深度学习涉及到的数学基础,包括高数、线代、概率论、数理统计、随机过程以及部分数值模拟计算等

常用概率分布总结

在分类和回归等任务中我们经常会假设某些变量服从某种分布,比如假设回归目标变量服从正态分布,有时候当目标变量并不服从正态分布时我们又会想办法通过一些transform将其分布转化到近似正态分布,这是因为常用的损失函数一般选择MSE,其假设分布服从正态分布。然而有时候又很难通过一些变换使目标变量服从正态分布,这时候我们就需要了解更多的概率分布,通过特定的分布选择特定的损失函数,往往效果会更好。比如电商商品销量预测常常会服从长尾右偏的Tweedie分布等等。

1. 二项分布

二项分布

2. 正态分布

要找出某个日期的正确上下班打卡时间,你可以使用`datetime`模块进行日期时间的比较和筛选。下面是一个示例代码: ```python import datetime # 打卡数据 data = [ {'日期': '2023-06-10', '开始时间': '2023-06-10 16:27:00', '结束时间': '2023-06-10 17:39:00'}, {'日期': '2023-06-11', '开始时间': '2023-06-11 01:57:00', '结束时间': '2023-06-11 02:02:00'}, {'日期': '2023-06-11', '开始时间': '2023-06-11 15:57:00', '结束时间': '2023-06-12 01:51:00'}, {'日期': '2023-07-01', '开始时间': '2023-07-01 08:09:00', '结束时间': '2023-07-01 17:25:00'}, {'日期': '2023-07-01', '开始时间': '2023-07-01 17:32:00', '结束时间': '2023-07-01 17:41:00'} ] target_date = datetime.date(2023, 6, 11) # 指定目标日期 # 遍历打卡数据,找到目标日期的打卡记录 for record in data: record_date = datetime.datetime.strptime(record['日期'], '%Y-%m-%d').date() if record_date == target_date: start_time = datetime.datetime.strptime(record['开始时间'], '%Y-%m-%d %H:%M:%S') end_time = datetime.datetime.strptime(record['结束时间'], '%Y-%m-%d %H:%M:%S') print('开始时间:', start_time) print('结束时间:', end_time) ``` 在上面的示例代码中,我们首先指定目标日期为`2023-06-11`,然后遍历打卡数据,找到与目标日期匹配的记录。然后将开始时间和结束时间转换为`datetime`对象,并打印出来。 你可以根据实际需要修改目标日期和打卡数据,以适应你的情况。 希望对你有所帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值