2021-08 集成学习打卡Task01:数学基础

这篇博客回顾了机器学习中的数学基础知识,重点讲解了概率论中的常见分布,包括二项分布、正态分布、泊松分布、伽马分布和Tweedie分布。Tweedie分布作为泊松和伽马的复合,适用于处理长尾数据,如电商销量预测。文中还提及了根据数据分布选择合适损失函数的重要性。
摘要由CSDN通过智能技术生成

Task01 数学基础

学习地址

介绍

这部分内容主要复习一下机器学习以及深度学习涉及到的数学基础,包括高数、线代、概率论、数理统计、随机过程以及部分数值模拟计算等

常用概率分布总结

在分类和回归等任务中我们经常会假设某些变量服从某种分布,比如假设回归目标变量服从正态分布,有时候当目标变量并不服从正态分布时我们又会想办法通过一些transform将其分布转化到近似正态分布,这是因为常用的损失函数一般选择MSE,其假设分布服从正态分布。然而有时候又很难通过一些变换使目标变量服从正态分布,这时候我们就需要了解更多的概率分布,通过特定的分布选择特定的损失函数,往往效果会更好。比如电商商品销量预测常常会服从长尾右偏的Tweedie分布等等。

1. 二项分布

二项分布

2. 正态分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值