- 题目: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。每次只能向下或者向右移动一步。
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7 //因为路径 1→3→1→1→1 的总和最小。
-
解析: 三个步骤:
- (1)定义数组元素的含义
定义为二维数组dp[i][j]
,则dp[m - 1][n - 1]
为答案。 - (2)找出数组元素之间的关系式
计算路径的和最小,所以dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + dp[i][j]
其中dp[i][j]为网格中的值。 - (3)找出初始值
首先,i 和 j 有一个为0,当i = 0时,则数组只有一行,求其之和即为所求,公式为dp[0][j] = dp[0][j - 1] + dp[0][j]
.同理,j = 0, 则数组只有一列,即dp[i][0] = dp[i - 1][0] + dp[i][0]
为所求。
- (1)定义数组元素的含义
-
参考答案:
class Solution{
public:
int minPathSum(vector<vector<int>>& grid){
int m = grid.size();
int n = grid[0].size();
if(m <= 0 && n <= 0){
return 0;
}
for(int i = 1; i < n; i++){
grid[0][i] = grid[0][i - 1] + grid[0][i];
}
for(int i = 1; i < m; i++){
grid[i][0] = grid[i - 1][0] + grid[i][0];
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
grid[i][j] = min(grid[i][j - 1], grid[i - 1][j]) + grid[i][j];
}
}
return grid[m - 1][n - 1];
}
};