最小路径和(二维的动态规划) LeetCode #64

  • 题目: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。每次只能向下或者向右移动一步。
输入:
[
 [1,3,1],
 [1,5,1],
 [4,2,1]
]
输出: 7 //因为路径 1→3→1→1→1 的总和最小。
  • 解析: 三个步骤:

    • (1)定义数组元素的含义
      定义为二维数组dp[i][j],则dp[m - 1][n - 1]为答案。
    • (2)找出数组元素之间的关系式
      计算路径的和最小,所以dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + dp[i][j] 其中dp[i][j]为网格中的值。
    • (3)找出初始值
      首先,i 和 j 有一个为0,当i = 0时,则数组只有一行,求其之和即为所求,公式为dp[0][j] = dp[0][j - 1] + dp[0][j].同理,j = 0, 则数组只有一列,即dp[i][0] = dp[i - 1][0] + dp[i][0]为所求。
  • 参考答案:

class Solution{
public:
	int minPathSum(vector<vector<int>>& grid){
		int m = grid.size();
		int n = grid[0].size();
		if(m <= 0 && n <= 0){
			return 0;
		}
		for(int i = 1; i < n; i++){
			grid[0][i] = grid[0][i - 1] + grid[0][i];
		}
		for(int i = 1; i < m; i++){
			grid[i][0] = grid[i - 1][0] + grid[i][0];
		}
		for(int i = 1; i < m; i++){
			for(int j = 1; j < n; j++){
				grid[i][j] = min(grid[i][j - 1], grid[i - 1][j]) + grid[i][j];
			}
		}
		return grid[m - 1][n - 1];
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值