Pytorch: 插值和上采样

nn.Upsample

定义

import torch.nn as nn
import torch.nn.functional as F

nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)
F.upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None)

参数
在这里插入图片描述
align_corners
在这里插入图片描述
上图是source pixel为44,上采样为target pixel为88的对齐和不对齐两种情况。当设置align_corners = True时,会对齐左上角元素,即输入的左上角元素是一定等于输出的左上角元素。

形状
或者指定输出的size(Wout)、size(Hout, Wout)、size(Dout, Hout, Wout)
在这里插入图片描述

nn.functional.interpolate

定义
Down/up samples the input to either the given size or the given scale_factor

import torch.nn.functional as F
F.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None)

参数
在这里插入图片描述
形状
或者指定输出的size(Wout)、size(Hout, Wout)、size(Dout, Hout, Wout)
在这里插入图片描述

Warning

warnings.warn(“nn.functional.upsample is deprecated(不赞成,反对). Use nn.functional.interpolate instead.”)
现在都建议使用interpolate方法实现上采样,所以尽量用interpolate

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值