Pytorch模型(.pth)转onnx模型(.onnx)

简介

Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移。

ONNX是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得不同的人工智能框架(如Pytorch, MXNet)可以采用相同格式存储模型数据并交互。 ONNX的规范及代码主要由微软,亚马逊 ,Facebook 和 IBM等公司共同开发,以开放源代码的方式托管在Github上。目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2, PyTorch, MXNet,ML.NET,TensorRT 和 Microsoft CNTK,并且 TensorFlow也非官方的支持ONNX。

代码实现( .pth --> .onnx )

import torch
import torch.onnx
from tinynet import tinynet
import os

def pth_to_onnx(input, checkpoint, onnx_path, input_names=['input'], output_names=['output'], device='cpu'):
    if not onnx_path.endswith('.onnx'):
        print('Warning! The onnx model name is not correct,\
              please give a name that ends with \'.onnx\'!')
        return 0

    model = tinynet() #导入模型
    model.load_state_dict(torch.load(checkpoint)) #初始化权重
    model.eval()
    # model.to(device)
    
    torch.onnx.export(model, input, onnx_path, verbose=True, input_names=input_names, output_names=output_names) #指定模型的输入,以及onnx的输出路径
    print("Exporting .pth model to onnx model has been successful!")

if __name__ == '__main__':
    os.environ['CUDA_VISIBLE_DEVICES']='2'
    checkpoint = './tinynet.pth'
    onnx_path = './tinynet.onnx'
    input = torch.randn(1, 1, 640, 360)
    # device = torch.device("cuda:2" if torch.cuda.is_available() else 'cpu')
    pth_to_onnx(input, checkpoint, onnx_path)

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值