在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。
Input
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
Output
方案数。
Sample Input
3 2
Sample Output
16
直接搜索的话,每个位置遍历时有放和不放两种情况,即使考虑不合法的情况,总数还是太大,考虑状压dp;
设 dp[ i ][ j ][ k ]表示:
前 i 行(包含第i行)在第 j 个状态时,有 k 个国王的方案数;
那么转移方程:
dp[ i ][ j ][ s ]=Σ { dp[ i-1 ][ k ][ s-gs[ j ] ];
其中 gs 表示 该行的国王数目;
当然对于同一行的情况我们可以先预处理;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 200005
#define inf 0x3f3f3f3f
#define INF 0x7fffffff
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const int mod = 10000007;
#define Mod 20100403
#define sq(x) (x)*(x)
#define eps 1e-10
typedef pair<int, int> pii;
inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; }
int situ[maxn], gs[maxn];
int cnt = 0;
int n, used;
ll f[10][3000][100];
void dfs(int m, int sum, int node) {
if (node >= n) {
situ[++cnt] = m;
gs[cnt] = sum;
return;
}
dfs(m, sum, node + 1);
dfs(m + (1 << node), sum + 1, node + 2);
}
int main()
{
//ios::sync_with_stdio(false);
rdint(n); rdint(used);
dfs(0, 0, 0);
for (int i = 1; i <= cnt; i++)f[1][i][gs[i]] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 1; j <= cnt; j++) {
for (int k = 1; k <= cnt; k++) {
if (situ[j] & situ[k])continue;
if ((situ[j] << 1)&situ[k])continue;
if ((situ[k] << 1)&situ[j])continue;
for (int s = used; s >= gs[j]; s--)
f[i][j][s] += f[i - 1][k][s - gs[j]];
}
}
}
ll ans = 0;
for (int i = 1; i <= cnt; i++)
ans += f[n][i][used];
cout << ans << endl;
}