【 windows安装Anaconda、CUDA、CUDNN、Pytorch】

本文详细介绍了在Windows上安装数据分析工具Anaconda、GPU加速库CUDA、深度学习库CUDNN以及Pytorch的步骤,包括检查兼容性、下载安装文件、配置环境变量和验证安装是否成功。每个步骤都提供了清晰的操作指引,确保用户能顺利完成安装过程。
摘要由CSDN通过智能技术生成

windows安装Anaconda、CUDA、CUDNN、Pytorch


一、安装anaconda

  1. 打开官网链接anaconda官网点击download
    在这里插入图片描述
  2. 双击打开下载好的文件,点击nest,然后点击agree
    在这里插入图片描述
    在这里插入图片描述
    3.选择All Users,然后点击next
    4.选择安装地址,可以根据自己需要自行选择(E:\Anaconda)
    5.第一个选项意思就是将安装路径填入到系统环境变量中(不勾选的话需要后期自己添加环境变量)。第二个勾选默认的不用管。直接点击 Install
    在这里插入图片描述
    6.等待安装完成。
    7.测试
    cmd中输入 conda --version
    在这里插入图片描述

8.如果没勾选添加环境变量,需要进行以下操作:
直接win搜索环境变量。
在这里插入图片描述
点击环境变量
在这里插入图片描述

在这里插入图片描述
双击path,添加以下路径(这里填写自己对应的路径):

E:\Anaconda 
E:\Anaconda\Scripts 
E:\Anaconda\Library\mingw-w64\bin
E:\Anaconda\Library\usr\bin 
E:\Anaconda\Library\bin

在这里插入图片描述

二、安装CUDA

1.查看自己电脑适配的版本,点win搜索nvidia
在这里插入图片描述
点击左下角的系统信息
在这里插入图片描述
选择组件,第三行为CUDA版本,安装的CUDA版本应低于自己电脑的CUDA版本(这里选则安装11.3,win11可用)
在这里插入图片描述
2.下载CUDA,进入官网链接: https://developer.nvidia.com/cuda-toolkit-archive(这里选择11.3版本,可以根据自己需要自行下载,为了安装pytorch方便,建议下载11.3或者11.6版本)
在这里插入图片描述
选择下载选项,点击Download
在这里插入图片描述
3.安装CUDA
第一次会让设置临时解压目录,第二次会让设置安装目录;
安装目录默认。
选择自定义安装。
在这里插入图片描述
如果是第一次安装,全选
如果是多次安装,尽量只选择第一个
在这里插入图片描述
取消Visual Studio
在这里插入图片描述
截图记下安装路径,后面添加环境变量用到
在这里插入图片描述
点击下一步开始安装
在这里插入图片描述
等待安装完成
4.检查环境变量
点击win搜索环境变量,打开编辑环境变量
在这里插入图片描述
打开环境变量
在这里插入图片描述
如果没有自动生成需要自己添加(注意之前查看保存的路径)
在这里插入图片描述

CUDA_PATH
CUDA_PATH_V11_3
NVCUDASAMPLES_ROOT
NVCUDASAMPLES11_3_ROOT

5.验证安装
运行cmd,输入nvcc --version 即可查看版本号;

set cuda,可以查看 CUDA 设置的环境变量。

三、安装CUDNN

1.cuDNN下载链接: https://developer.nvidia.com/rdp/cudnn-download

(先注册登录)
2.选择对应CUDA版本的CUDNN链接: https://developer.nvidia.com/rdp/cudnn-archive
这里选择11.X(CUDA11.3),点击第一个链接下载
在这里插入图片描述
3.cuDNN叫配置更为准确,我们先把下载的 cuDNN 解压缩,会得到下面的文件:

下载的文件都在这个目录下:
在这里插入图片描述
下载后发现其实cudnn不是一个exe文件,而是一个压缩包,解压后,有三个文件夹,把三个文件夹拷贝到cuda的安装目录下。
CUDA 的安装路径在前面截图中有,或者打开电脑的环境变量查看。

拷贝时看到,CUDA 的安装目录中,有和 cuDNN 解压缩后的同名文件夹,这里注意,不需要担心,直接复制即可。cuDNN 解压缩后的同名文件夹中的配置文件会添加到 CUDA安装目录中的同名文件夹中。【此处还是建议还是分别把文件夹的内容复制到对应文件夹中去】

现在大家应该可以理解,cuDNN 其实就是 CUDA 的一个补丁而已,专为深度学习运算进行优化的。

4.验证安装是否成功

配置完成后,我们可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwidthTest.exe:

首先win+R启动cmd,cd到安装目录下的 …\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe(进到目录后需要直接输“bandwidthTest.exe”和“deviceQuery.exe”),应该得到下图:
在这里插入图片描述
在这里插入图片描述

四、安装pytorch

1、用conda创建环境来安装不同版本的pytorch,每次都安装删除会很麻烦,可以通过使用conda指令来为不同的版本创建单独的环境。进入cmd后输入指令:

conda create -n pytorch python=3.8

等号后面为python的版本号。
安装过程会出现y/n提示,输入y即可。安装的速度与网速有关,如若期间有未安装成功的部分再重新输入语句继续安装即可。

2、安装结束后,可输入以下语句查看自己新安装的环境:

conda info --envs

3、进入新建的环境

conda activate pytorch

4.下载安装,打开网址链接: https://pytorch.org/get-started/previous-versions/
选择Windows下的CUDA11.3(对应自己版本)
在这里插入图片描述
5、复制下面命令进入到cmd中虚拟环境下粘贴命令进行安装

验证安装

import torch
 
print(torch.__version__)
print(torch.cuda.is_available())

在这里插入图片描述

### 回答1: anaconda是一个Python发行版,包含了许多常用的科学计算和数据分析的库。 CUDA是英伟达公司推出的一种并行计算平台和编程模型,可以利用GPU的并行计算能力加速计算。 cuDNNCUDA深度神经网络库,提供了高效的深度学习算法实现。 PyTorch是一个基于Torch的开源机器学习库,支持动态计算图,具有灵活性和高效性。它也支持CUDA加速,可以利用GPU进行深度学习计算。 ### 回答2: Anaconda是一个Python数据科学平台,它使得Python安装和使用更加方便。Anaconda也包含了许多科学计算的包和工具,比如NumPy,SciPy和Pandas等。使用Anaconda用户可以很方便地创建Python虚拟环境和安装依赖。 CUDA是一种由NVIDIA开发的并行计算平台和编程模型。它使得全球各地的科研人员、工程师和开发者可以运用GPU的强大算力来加速各种计算任务,如深度学习、科学计算、图形处理等。 cuDNNCUDA的一个加速库,即CUDA Deep Neural Network library。它为深度神经网络框架提供了加速和优化功能,包括快速的卷积操作和大量的内存优化技术。cuDNN被广泛应用于许多深度学习框架,例如TensorFlow、PyTorch和Caffe等。 PyTorch是一个开源的Python深度学习框架,它是Facebook AI Research实验室主导开发的。PyTorch最大的特点是使用动态图技术,与大多数深度学习框架使用的静态图技术不同,这使得它的使用更加灵活和自由。PyTorch不仅提供了标准的深度学习构建块,如卷积神经网络和递归神经网络等,还提供了许多实用的工具来简化模型训练和部署。PyTorch在学术界和工业界都有很高的用户群体和口碑。 综上所述,AnacondaPython数据科学提供了一个全面的解决方案,CUDAcuDNN深度学习提供了强大的计算加速,而PyTorch则是一个灵活、高效和易于使用的深度学习框架。这些工具和平台的结合为科学计算和深度学习带来了很大的便利和突破。 ### 回答3: Anaconda是一个Python的科学计算平台。它包含了常用的Python科学计算库,如Numpy、Scipy、Matplotlib等,并提供了方便的安装、管理和更新工具。Anaconda也支持创建不同的Python环境,让用户可以灵活地选择和管理不同的库。 CUDA是英伟达开发的通用并行计算架构,它可以利用GPU的强大并行计算能力加速各种计算任务。在CUDA的支持下,用户可以使用CUDA C、CUDA C++、CUDA Fortran等语言进行GPU编程。CUDA还提供了各种库和工具,如cuDNN、cuBLAS、cuSPARSE等,可以方便地进行科学计算和深度学习等任务。 cuDNNCUDA Deep Neural Network)是CUDA提供的深度学习库之一,它提供了一系列高度优化的算法和数据结构,可以加速深度神经网络的训练和推断过程。cuDNN支持很多流行的深度学习框架,如TensorFlow、PyTorch、Caffe等。通过使用cuDNN,用户可以充分利用GPU的计算能力加速深度学习任务。 PyTorch是一个基于Python的开源深度学习框架。它采用动态图形方式进行模型构建,支持灵活的动态计算图和自动求导机制,可以方便地进行模型的调试和优化。PyTorch还提供了一系列高效的深度学习算法和数据结构,如Convolution、Pooling、Linear、BatchNorm等,可以方便地构建各种深度神经网络。 综上所述,Anaconda提供了Python科学计算的全套解决方案,CUDA可以利用GPU的强大计算能力加速各种计算任务,cuDNN可以加速深度学习任务,而PyTorch则为深度学习提供了一种灵活高效的开发框架。这些工具的结合可以让用户更方便地进行各种科学计算和深度学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一寸光阴不可轻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值