欢迎学习RKNN系列相关文章,从模型转换、精度分析,评估到部署,推荐好资源:
一、Ubuntu系统上安装rknn-toolkit
二、使用rknn-toolkit将Pytorch模型转为RKNN模型
三、RKNN模型的评估和推理测试
四、RKNN模型量化精度分析及混合量化提高精度
五、RKNN模型性能评估和内存评估
六、rknn-toolkit-lite2部署RKNN模型到开发板上(python版)
七、RKNN C API开发板上落地部署RKNN模型
八、RKNN零拷贝API开发板落地部署RKNN模型
一、安装包下载
1.1 官网下载
Rknn Toolkit的官网链接为:rknn-toolkit 其它版本链接为:rknn-toolkit
安装包下载链接为:安装包
下面解压后的样子如下:
上面标记出来的是windows系统下包,其它为linux或mac系统。
本教程安装的对应linux版本如下:
1.2 我提供的安装包
本教程提供的安装包获取方法为文章末扫码到公众号中回复关键字:模型部署RKNN。获取下载链接。安装包中内如下:
二、环境准备
需要准备好虚拟机,在虚拟机上安装好Ubuntu系统,再在Ubuntu系统上安装Miniconda和Pycharm,关于这些安装教程,参考我其它博文:
安装VMware
VMware上安装Ubuntu系统
虚拟机Ubuntu系统上安装Miniconda
虚拟机Ubuntu系统上安装Pycharm
上面都准备好后,在虚拟机终端创建一个新的虚拟环境,安装python版本为3.8
输入命令:
conda create -n Rknn_Toolkit_py3.8_Torch1.10_TF2.6 python=3.8
激活虚拟环境,输入下面命令:
conda activate Rknn_Toolkit_py3.8_Torch1.10_TF2.6
三、安装系统编译工具
在终端输入下面命令安装系统编译工具:
sudo apt-get install build-essential python-dev
四、安装rknn-toolkit
安装numpy,在终端输入下面命令安装:
pip install numpy==1.16.6 -i https://pypi.tuna.tsinghua.edu.cn/simple
将本地下载好的包拷贝到虚拟机上,如下:
新建一个requirements.txt文件,将下面安装包对应版本进行安装。下面这些包对应版本在1.2中我提供的安装包中有。
# base deps
numpy==1.19.5
protobuf==3.12.2
flatbuffers==1.12
# utils
requests==2.27.1
psutil==5.9.0
ruamel.yaml==0.17.4
scipy==1.5.4
tqdm==4.64.0
bfloat16==1.1
opencv-python==4.5.5.64
# base
onnx==1.9.0
onnxoptimizer==0.2.7
onnxruntime==1.10.0
torch==1.10.1
torchvision==0.11.2
tensorflow==2.6.2
安装上面包如下:
安装拷贝好的rknn-toolkit包,如下:
安装后检查是否安装成功,对应虚拟环境下输入conda list,查看以安装好的包:
五、总结
以上就是虚拟机Ubuntu系统上安装rknn-toolkit的详细过程,希望能帮到你!
总结不易,多多支持,谢谢!