虚拟机Ubuntu系统上安装rknn-toolkit(详细图文教程)

本文详细介绍了如何在Ubuntu系统上安装rknn-toolkit,包括从官网下载、使用提供的安装包、环境配置(如Python、Miniconda和PyCharm)、安装系统编译工具,以及如何将Pytorch模型转换为RKNN模型并进行部署的过程。
摘要由CSDN通过智能技术生成

欢迎学习RKNN系列相关文章,从模型转换、精度分析,评估到部署,推荐好资源:

一、Ubuntu系统上安装rknn-toolkit
二、使用rknn-toolkit将Pytorch模型转为RKNN模型
三、RKNN模型的评估和推理测试
四、RKNN模型量化精度分析及混合量化提高精度
五、RKNN模型性能评估和内存评估
六、rknn-toolkit-lite2部署RKNN模型到开发板上(python版)
七、RKNN C API开发板上落地部署RKNN模型
八、RKNN零拷贝API开发板落地部署RKNN模型


在这里插入图片描述

一、安装包下载

1.1 官网下载

Rknn Toolkit的官网链接为:rknn-toolkit 其它版本链接为:rknn-toolkit

安装包下载链接为:安装包

在这里插入图片描述

下面解压后的样子如下:

在这里插入图片描述

上面标记出来的是windows系统下包,其它为linux或mac系统。

本教程安装的对应linux版本如下:

在这里插入图片描述

1.2 我提供的安装包

本教程提供的安装包获取方法为文章末扫码到公众号中回复关键字:模型部署RKNN。获取下载链接。安装包中内如下:

在这里插入图片描述

二、环境准备

需要准备好虚拟机,在虚拟机上安装好Ubuntu系统,再在Ubuntu系统上安装Miniconda和Pycharm,关于这些安装教程,参考我其它博文:
安装VMware
VMware上安装Ubuntu系统
虚拟机Ubuntu系统上安装Miniconda
虚拟机Ubuntu系统上安装Pycharm

上面都准备好后,在虚拟机终端创建一个新的虚拟环境,安装python版本为3.8

输入命令:

conda create -n Rknn_Toolkit_py3.8_Torch1.10_TF2.6 python=3.8

在这里插入图片描述

激活虚拟环境,输入下面命令:

conda activate Rknn_Toolkit_py3.8_Torch1.10_TF2.6

在这里插入图片描述

三、安装系统编译工具

在终端输入下面命令安装系统编译工具:

sudo apt-get install build-essential python-dev

在这里插入图片描述

四、安装rknn-toolkit

安装numpy,在终端输入下面命令安装:

pip install numpy==1.16.6 -i https://pypi.tuna.tsinghua.edu.cn/simple

将本地下载好的包拷贝到虚拟机上,如下:

在这里插入图片描述

新建一个requirements.txt文件,将下面安装包对应版本进行安装。下面这些包对应版本在1.2中我提供的安装包中有。

# base deps
numpy==1.19.5
protobuf==3.12.2
flatbuffers==1.12

# utils
requests==2.27.1
psutil==5.9.0
ruamel.yaml==0.17.4
scipy==1.5.4
tqdm==4.64.0
bfloat16==1.1
opencv-python==4.5.5.64

# base
onnx==1.9.0
onnxoptimizer==0.2.7
onnxruntime==1.10.0
torch==1.10.1
torchvision==0.11.2
tensorflow==2.6.2

安装上面包如下:

在这里插入图片描述

安装拷贝好的rknn-toolkit包,如下:

在这里插入图片描述

安装后检查是否安装成功,对应虚拟环境下输入conda list,查看以安装好的包:

在这里插入图片描述

五、总结

以上就是虚拟机Ubuntu系统上安装rknn-toolkit的详细过程,希望能帮到你!

总结不易,多多支持,谢谢!

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值