模型部署——rknn-toolkit-lite2部署RKNN模型到开发板上(python版)

欢迎学习RKNN系列相关文章,从模型转换、精度分析,评估到部署,推荐好资源:
一、Ubuntu系统上安装rknn-toolkit
二、使用rknn-toolkit将Pytorch模型转为RKNN模型
三、RKNN模型的评估和推理测试
四、RKNN模型量化精度分析及混合量化提高精度
五、RKNN模型性能评估和内存评估
六、rknn-toolkit-lite2部署RKNN模型到开发板上(python版)
七、RKNN C API开发板上落地部署RKNN模型
八、RKNN零拷贝API开发板落地部署RKNN模型


在这里插入图片描述

在RKNN模型部署前,需要注意以下几点:

(1)硬件平台兼容性:
确保你的开发板与 RKNN Toolkit Lite2 兼容。目前,RKNN Toolkit Lite2 支持 Rockchip RK3566、RK3588、RK3399 等平台。
确认开发板的 NPU 型号和版本与 RKNN 模型的 NPU 算子兼容。

(2)模型转换:
使用 RKNN Toolkit 或 RKNNConverter 工具将 PyTorch、TensorFlow 等框架模型转换为 RKNN 模型。
转换时,需要指定目标硬件平台和 NPU 型号。
确保模型转换成功,并生成相应的 RKNN 模型文件。
关于模型转换的教程,参考我另外一篇博文:Pytorch转RKNN模型

(3)部署环境:
在开发板上安装 RKNN Runtime 和相关依赖库。
确认开发板的系统版本和编译环境与 RKNN Toolkit Lite2 兼容。

(4)模型加载:
使用 RKNN Toolkit Lite2 提供的 API 加载 RKNN 模型。
需指定模型文件路径以及其他参数。

(5)模型推理:
使用 RKNN Toolkit Lite2 提供的 API 进行模型推理。
需提供输入数据和相关参数。

(6)性能优化:
可以使用 RKNN Toolkit Lite2 提供的性能分析工具分析模型性能。
根据分析结果,可以对模型进行优化,以提高推理速度和降低功耗。

一、源码包准备

本配套源码包的获取方式为文章末扫码到公众号「视觉研坊」中回复关键字:RKNN Lite2开发板部署。获取下载链接。

下载解压后的样子如下:

在这里插入图片描述

二、环境准备

先在开发板上运行rknn_server,通过adb连通开发板,在开发板系统上安装python编译环境。

2.1 安装Miniconda

在开发板系统上安装Miniconda的详细教程,见我另外一篇博客:Miniconda安装

2.2 新建虚拟环境

上一步Miniconda安装好后,在此基础上安装一个新的虚拟环境,如下,:
查看已有虚拟环境命令为:

conda env list

创建新虚拟环境命令为:

conda create -n name python=3.9

在这里插入图片描述
在这里插入图片描述

上面步骤创建好后激活虚拟环境,如下:

激活命令为:

conda activate name

在这里插入图片描述

2.3 安装rknn_toolkit_lite2包

rknn_toolkit_lite2包的轮子文件,在我提供源码包中的packages文件夹中,如下:

在这里插入图片描述

在激活的虚拟环境中,进入到存放轮子文件目录下,使用下面命令安装:

pip install rknn_toolkit_lite2-1.6.0-cp39-cp39-linux_aarch64.whl -i https://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述

2.4 安装OpenCV包

在同样的虚拟环境下,使用下面命令安装opencv:

pip install opencv-python -i https://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述

三、推理

上面环境都准备好后,在终端通过命令进入到源码包目录下,运行下面命令即可在开发板上推理RKNN模型。

python rknntoolkit_lite2_inference.py

在这里插入图片描述

3.1 代码

此代码对应源码包中的rknntoolkit_lite2_inference.py脚本。

from rknnlite.api import RKNNLite
import cv2
import numpy as np

def show_outputs(output):
    output_sorted = sorted(output,reverse = True)
    top5_str = '\n----------top5-----------\n'
    for i in range(5):
        value = output_sorted[i]
        index = np.where(output == value)
        for j in range(len(index)):
            if (i + j) >= 5:
                break
            if value > 0:
                top1 = "{}:{}\n".format(index[j],value)
            else:
                top1 = "-1:0.0\n"
            top5_str += top1
    print(top5_str)

def show_perfs(perfs):
    perfs = "perfs:{}\n".format(perfs)
    print(perfs)

def softmax(x):
    return np.exp(x)/sum(np.exp(x))

if __name__ == "__main__":
    rknn = RKNNLite()

    # 使用load_rknn接口直接加载RKNN模型
    rknn.load_rknn(path="resnet18.rknn")

    # 调用init_runtime接口初始化运行时环境
    rknn.init_runtime(
        core_mask = 0,  # core_mask表示NPU的调度模式,设置为0时表示自由调度,设置为1,2,4时分别表示调度某个单核心,设置为3时表示同时调度0和1两个核心,设置为7时表示1,2,4三个核心同时调度
        # targt = "rk3588"
    )

    # 使用Opencv读取图片
    img = cv2.imread("space_shuttle_224.jpg")
    img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

    # 调用inference接口进行推理测试
    output = rknn.inference(
        inputs=[img],
        data_format=None
    )

    show_outputs(softmax(np.array(output[0][0])))  # 根据概率排名,打印出前5名的概率

    rknn.release()

3.2 开发板推理结果

运行上面脚本,输出推理结果如下:

在这里插入图片描述

打开源码包中的图片和imagenet1000标签.txt文件对照查看,推理预测的结果与标签文件对应的类名一致,说明开发板推理结果正确,如下:

在这里插入图片描述

四、总结

以上就是rknn-toolkit-lite2部署RKNN模型到开发板上的详细过程,CAPI开发板部署见下一期博文。

总结不易,多多支持,谢谢!

感谢您阅读到最后!关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

### YOLOv8 模型在 RK3588 开发板上的部署教程 #### 准备工作 为了成功地将YOLOv8模型部署到RK3588开发板上,需先准备好必要的软件工具和环境配置。这包括但不限于安装Ubuntu操作系统、设置好Python编程环境以及下载所需的依赖库。 对于具体的操作系统本建议采用稳定如Ubuntu 20.04 LTS,并确保已正确设置了瑞芯微的NPU仿真环境用于后续的模型优化与验证[^1]。 #### 获取并准备YOLOv8模型 从Ultralytics官方GitHub仓库获取最新的YOLOv8训练成果或自行基于此框架完成特定场景下的定制化训练过程。之后按照官方指导文档中的说明导出ONNX格式的目标检测网络结构文件以便于下一步骤处理。 #### 转换为RKNN格式 利用瑞芯微提供的`RKNN-Toolkit2`工具集,在X86架构计算机上执行模型转换操作。该步骤涉及加载先前获得的ONNX文件并通过一系列参数调整最终产出适用于ARM NPU加速计算特性的`.rknn`二进制数据包。值得注意的是,如果目标硬件仅限于实际物理设备而非模拟器,则应选用轻量化本即`RKNN-Toolkit2-Lite`来进行此项任务[^2]。 ```bash # 假设已经安装好了RKNN Toolkit python3 -m pip install rknn-toolkit2==0.0.7.post1 ``` ```python from rknn.api import RKNN if __name__ == '__main__': # 创建RKNN对象实例 rknn = RKNN() # 加载ONNX模型路径 onnx_model_path = './yolov8.onnx' # 导入ONNX模型RKNN内部表示形式 ret = rknn.load_onnx(model=onnx_model_path, input_size_list=[[3, 640, 640]]) if ret != 0: print('Load ONNX model failed!') exit(ret) # 构建RKNN模型 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build RKNN model failed!') exit(ret) # 将构建好的模型保存下来供嵌入式端调用 ret = rknn.export_rknn('./yolov8.rknn') if ret != 0: print('Export RKNN model failed!') exit(ret) ``` #### 移植至RK3588开发板 通过SCP或其他方式传输上述生成的`.rknn`文件到搭载Linux系统的RK3588主板当中去。在此基础上编写简单的应用程序接口(API),实现图像输入输出管理逻辑的同时调用底层API完成预测运算流程控制。考虑到实时性和资源利用率等因素的影响,推荐优先考虑C++语言作为主要编码手段之一[^3]。 #### 测试与调试 最后一步是对整个解决方案进行全面的功能性检验——不仅要在理想条件下确认预期效果能否达成,还应该针对可能出现的各种异常情况进行充分的压力测试以保障系统的健壮程度。此外,借助日志记录机制可以帮助快速定位潜在问题所在位置从而加快修复进度。
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值