对部分参数进行l2正则化

该博客探讨了深度学习模型中权重和偏置参数的管理。通过遍历模型的参数,将权重和偏置分开管理,使用SGD优化器,对权重应用权重衰减来防止过拟合。文章特别指出对`embedding1.weight`进行特殊处理,这可能涉及到词嵌入的优化。博客提供了详细的代码实现,展示了如何在训练过程中差异化地对待不同类型的参数。
摘要由CSDN通过智能技术生成

weight_p, bias_p = [],[]
for name, p in model.named_parameters():
if ‘bias’ in name:
bias_p += [p]
else:
weight_p += [p]
optim.SGD([
{‘params’: weight_p, ‘weight_decay’:1e-5},
{‘params’: bias_p, ‘weight_decay’:0}
], lr=1e-2, momentum=0.9)
{}内优先级最高

embedding=[]
for name,p in model.named_parameters():
if ‘embedding1.weight’ in name:
embedding+=[p]

参考:
https://zhuanlan.zhihu.com/p/259159952
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值