pytorch model.named_parameters() ,model.parameters() ,model.state_dict().items()

1、model.named_parameters(),迭代打印model.named_parameters()将会打印每一次迭代元素的名字和param

for name, param in model.named_parameters():
	print(name,param.requires_grad)
	param.requires_grad=False

2、model.parameters(),迭代打印model.parameters()将会打印每一次迭代元素的param而不会打印名字,这是他和named_parameters的区别,两者都可以用来改变requires_grad的属性

for  param in model.parameters():
	print(param.requires_grad)
	param.requires_grad=False

3、model.state_dict().items() 每次迭代打印该选项的话,会打印所有的name和param,但是这里的所有的param都是requires_grad=False,没有办法改变requires_grad的属性,所以改变requires_grad的属性只能通过上面的两种方式。

for name, param in model.state_dict().items():
	print(name,param.requires_grad=True)

4、改变了requires_grad之后要修改optimizer的属性

        optimizer = optim.SGD(
            filter(lambda p: p.requires_grad, model.parameters()),   #只更新requires_grad=True的参数
            lr=cfg.TRAIN.LR,
            momentum=cfg.TRAIN.MOMENTUM,
            weight_decay=cfg.TRAIN.WD,
            nesterov=cfg.TRAIN.NESTEROV
        )

5、随机参数初始化

def init_weights(m):
    if isinstance(m, nn.Conv2d):
        torch.nn.init.xavier_uniform(m.weight.data)
model.apply(init_weights)
<think>嗯,用户遇到了扩散模型权重合并时输入块形状不匹配的问题,具体错误是输入块的卷积层权重形状不匹配,比如`[320, 12, 3, 3]`和`[320, 4, 3, 3]`。我需要先分析可能的原因,然后给出解决方案。 首先,形状不匹配通常发生在加载预训练权重时,当前模型的层结构与检查点中的不一致。这里用户提到的是输入块(input_blocks)中的卷积层,可能是在模型结构上做了修改,比如增加了层数或者改变了通道数。例如,修改了卷积层的输入输出通道数,导致权重无法直接加载。 接下来,我应该考虑几个解决方案。第一种方法是检查模型结构是否与预训练权重兼容。用户可能在修改网络时增加了卷积层,改变了通道数,比如从4增加到12,这样权重形状自然不匹配。这时候需要确认修改后的结构是否必要,或者是否可以调整回原来的结构以兼容权重。 如果结构修改是必要的,那么可能需要手动调整权重。比如,如果当前模型的输入通道是4,而预训练权重是12,可能需要通过插值或复制来扩展通道。不过,这种方法需要谨慎,因为随意扩展可能会影响模型性能。例如,对于卷积层的权重,可以使用PyTorch的`nn.init`来重新初始化新增的通道部分,并保留原有通道的权重。 另外,用户可能在合并不同版本的模型权重,比如不同时间步的模型。这时候需要确保合并的权重对应相同的网络结构。如果不同版本的模型结构不同,直接合并会导致形状不匹配。可能需要重新训练或使用一致的模型结构进行合并。 还有一种可能是分布式训练中的参数分布问题,比如使用`DistributedDataParallel`时,参数名称可能带有`module.`前缀,导致加载错误。这时候需要调整参数名称,去除前缀,确保匹配。 最后,如果以上方法都不行,可能需要部分加载权重,跳过不匹配的层,并重新训练这些层。这虽然需要额外的训练时间,但可以避免结构上的冲突。 在具体操作上,用户需要逐步排查模型结构,对比当前模型和预训练权重的参数形状,找出所有不匹配的层,然后针对每一层决定如何处理。可能需要编写脚本来手动调整权重字典,或者修改模型结构以适配预训练权重。 总结下来,解决这个问题的步骤包括:确认模型结构的一致性,调整权重形状或结构,处理分布式训练的参数前缀,以及必要时部分加载权重并进行微调。</think>### 扩散模型权重合并形状不匹配问题解决方案 #### 问题分析 错误信息表明模型结构修改后与预训练权重不兼容,特别是在`input_blocks`中卷积层的输入/输出通道维度不匹配: - 检查点中的权重形状:`[320, 12, 3, 3]` - 当前模型的权重形状:`[320, 4, 3, 3]` 这说明修改后的模型在某一层的输入通道数从`4`变为`12`(或相反),导致权重无法直接加载[^1]。 --- #### 分步解决方案 1. **检查网络结构一致性** - 对比原始模型与当前模型的`input_blocks`部分: ```python # 打印预训练权重中的参数形状 pretrained_dict = torch.load("pretrained.pth") for key in pretrained_dict.keys(): if "input_blocks" in key: print(key, pretrained_dict[key].shape) ``` ```python # 打印当前模型的参数形状 current_model = YourModel() for name, param in current_model.named_parameters(): if "input_blocks" in name: print(name, param.shape) ``` - 确保对应层的输入/输出通道数一致(例如`Conv2d(in_channels=4, out_channels=320)` vs `Conv2d(in_channels=12, out_channels=320)`) 2. **手动调整权重形状** - **场景**:若必须保留新结构(如从`4`通道扩展到`12`通道) - **操作**:通过插值或填充初始化新增通道的权重 ```python # 示例:将预训练权重从[320,4,3,3]扩展到[320,12,3,3] original_weight = pretrained_dict["input_blocks.1.conv.weight"] # shape [320,4,3,3] new_weight = torch.zeros(320, 12, 3, 3) new_weight[:, :4, :, :] = original_weight # 保留原始通道 new_weight[:, 4:, :, :] = torch.nn.init.kaiming_normal_(new_weight[:, 4:, :, :]) # 初始化新增通道 current_model.input_blocks.1.conv.weight.data = new_weight ``` 3. **处理分布式训练参数前缀** - 若使用`DistributedDataParallel`,参数名称可能包含`module.`前缀: ```python # 去除前缀以匹配单卡训练保存的权重 pretrained_dict = {k.replace("module.", ""): v for k, v in pretrained_dict.items()} ``` 4. **选择性加载兼容参数** - 仅加载形状匹配的权重,跳过不兼容层: ```python model_dict = current_model.state_dict() matched_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and v.shape == model_dict[k].shape} model_dict.update(matched_dict) current_model.load_state_dict(model_dict, strict=False) ``` 5. **结构回滚与微调** - 若上述方法无效,建议暂时恢复原始网络结构加载权重,再通过渐进式修改结构并微调: ```python # 步骤1:恢复原始结构加载权重 original_model = OriginalModel() original_model.load_state_dict(torch.load("pretrained.pth")) # 步骤2:逐步添加新层并微调 modified_model = ModifiedModel() modified_model.backbone.load_state_dict(original_model.backbone.state_dict()) ``` --- #### 关键点总结 | 方法 | 适用场景 | 注意事项 | |--------------------|-----------------------------------|------------------------------| | 结构调整 | 非必要结构修改导致不匹配 | 可能牺牲模型扩展性 | | 权重插值 | 输入/输出通道数小范围变化 | 需验证初始化合理性 | | 选择性加载 | 局部修改且大部分参数可复用 | 需补充训练跳过层的参数 | | 结构回滚+微调 | 复杂结构改动 | 时间成本较高但稳定性最佳 | ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值