OCT介绍和分类

前言:研究方向和OCT有关,为了方便以后回顾,所以整理了OCT相关的一些内容。

OCT介绍

名称:OCT、光学相干层析成像术、Optical Coherence Tomography。
概念:OCT基于光的低相干干涉原理,其核心构造是迈克逊干涉仪。工作流程,先获取样品的后向散射光,通过对干涉信号的解调与处理,重建得到样品的二维断层或三维立体结构图像。
比较其它常用医学成像技术:OCT是非入侵性光学成像技术、微米量级的高分辨率、成本价格较低。

  • CT(Computed Tomography),即电子计算机断层扫描,对人体有电离辐射影响,并且成像分辨率低。
  • MRI(Magnetic Resonance Imaging),即核磁共振技术,时间比较长,对于儿童会需要镇静,同时价格昂贵。
  • 超声成像(Ultrasound imaging),虽然能够实时成像,也没有辐射,价格也比其它两个低,但是分辨率不高,而且是带接触的。

应用

  • 应用场景,OCT在眼科、口腔科、心血管科等领域有广泛应用,尤其是眼科。OCT在需要非入侵性成像的应用场景中是很好的选择。
  • 内窥OCT:OCT的实际应用通常采用红外或近红外光源,其组织穿透能力不足。内窥镜OCT将光纤和内窥镜探头与OCT相结合,可实现生物腔体的实时成像。

分类

时域OCT

名称:时域OCT、TD-OCT、Time Domain-OCT。
结构:是最早的OCT,使用低相干(Low Coherence)光源,通过迈克逊干涉仪进行干涉成像。光被分光镜分成两路光,一路经过参考臂,一路经过样品臂。两路光反射回来经过分光镜产生干涉,由光电探测器接收干涉信号并进行光电转换,从而得到样品某一点的信息。通过移动样品臂的距离,可以实现不同深度的采样,从而形成A-SCAN。通过移动振镜实现X和Y方向的移动,从而实现二维B-SCAN和三维C-SCAN的OCT成像。
在这里插入图片描述
特点:A-SCAN成像是受限于机械参考臂的移动速度,成像速度慢,无法进行实时成像。

频域OCT

名称:频域OCT、FD-OCT、Fourier Domain OCT、傅里叶域OCT。
原理:不通过移动参考臂来实现A-SCAN,而是通过接收不同波长的光来实现不同深度的检测。上面个名称可以看出,频域OCT有个傅里叶域OCT的称呼,其原理和傅里叶变换有关。参考臂和样品臂的干涉光谱与样品不深度的背向散射光强度信息刚好是一对傅里叶变换的关系。通过对采样得到的光强度信息进行傅里叶变换,不同频率的振幅就对应这样品不同深度光强度。
特点:相比于时域OCT,不需要移动参考臂就能得到A-SCAN,没有了机械臂的限制,能够实现了高速实时成像。
分类:频域OCT主要分成扫频OCT和谱域OCT。

扫频OCT

名称:扫频OCT、SS-OCT、Swept Source OCT。
结构:光源是窄带相干光,通过分时发出不同波长的光,其余结构原理和时域差不多就是不需要移动参考臂。
特点:除了振镜移动和采集的同步需要时钟,还需要一个时钟来触发采集实现A-SCAN。因为需要分时发出不同波长的光,并采集不同的波长的光。

谱域OCT

名称:谱域OCT、SD-OCT、Spectral Domain OCT。
结构:宽带光源经过光纤耦合器分为参考光与样品光,各自在经过参考镜反射与样品重新会光纤耦合器进行干涉。从样品臂返回的散射光可以看作是多种单色光与成分相似的参考光进行干涉,干涉后的光被光谱仪的光栅按波长展开,最后被CCD采样再经过傅里叶变换得到A-SCAN。通过移动振镜实现X和Y方向的移动,从而实现二维B-SCAN和三维C-SCAN的OCT成像。
在这里插入图片描述
特点:A-SCAN是一次形成,不需要像扫频OCT那样分时打出不同波长的光来形成A-SCAN,但缺点无法控制A-SCAN打多少个点,A-SCAN的点数是固定的。同时CCD需要一定曝光时间,扫描速度不能过快。

### 光学相干断层扫描(OCT)的工作原理 光学相干断层扫描(OCT)是一种基于低相干干涉测量技术成像方法,其核心在于利用光波的干涉特性来获取生物组织内部的微细结构信息。具体而言,OCT通过将一束光源分为两部分——参考臂样品臂,分别反射回来后再进行干涉分析,从而获得深度方向上的信号分布[^1]。 #### 干涉测量的核心机制 OCT采用宽带光源(如超发光二极管),这种光源具有较短的相干长度,因此只有当参考臂与样品臂之间的光程差接近零时才能产生显著的干涉信号。通过对参考臂位置的变化进行精确控制并记录相应的干涉强度,即可重建出样品沿深度方向的散射系数分布图谱[^2]。 #### 高分辨率三维成像能力 由于使用了近红外区域内的宽频带光源以及快速傅里叶变换算法处理数据,现代OCT设备能够实现亚微米级的空间分辨力,并且能够在活体状态下完成大范围体积内多层面的同时采集,形成完整的三维可视化模型。 ### 应用领域 #### 妇科诊断中的应用 在妇科领域,OCT被用于评估宫颈上皮细胞厚度及其分层情况,帮助早期发现癌前病变;还可以观察输卵管粘膜表面形态特征,辅助判断是否存在炎症或其他异常状况。 #### 生物医学其他方面的广泛应用 除了上述提到的内容之外,借助先进的图像分割技术模式识别手段,结合深度学习框架训练后的神经网络模型,可以从海量复杂的OCT影像资料中自动提取关键指标参数,提高疾病筛查效率及准确性。 另外,在眼科方面,SD-OCT因其卓越的表现而备受关注。例如它可以清楚地显示出视网膜色素上皮下方的高反光线以及感光器层的具体状态等细节之处,这对于研究黄斑区各类疾病的病理过程有着不可替代的作用[^3]。 ```python # 示例代码展示如何加载OCT图像并显示基本信息 import numpy as np from PIL import Image def load_oct_image(file_path): img = Image.open(file_path).convert('L') # 转灰度图 data = np.array(img, dtype=np.float32) / 255.0 # 归一化到[0,1] return data oct_data = load_oct_image("example.oct") print(f"Image shape: {oct_data.shape}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值