一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/unique-paths-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
代码中给定了 网格:vector<vector>& obstacleGrid
首先如何得到二维向量的维度呢:
int m= obstacleGrid.size();
int n = obstacleGrid[0].size();
首先定义dp数组
vector<vector<int>> dp(m,vector<int>(n,0))//将它初始化为0
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m= obstacleGrid.size();
int n = obstacleGrid[0].size();
if(obstacleGrid[m-1][n-1]==1||obstacleGrid[0][0]==1)
{
return 0;
}
vector<vector<int>> dp(m,vector<int>(n,0));
for(int i=0; i<m && obstacleGrid[i][0]==0; i++)
{
dp[i][0]=1;
}
for(int i=0;i<n && obstacleGrid[0][i]==0; i++)
{
dp[0][i]=1;
}
for(int a =1;a<m;a++)
{
for(int b=1;b<n;b++)
{
if(obstacleGrid[a-1][b]==0&&obstacleGrid[a][b-1]==0) dp[a][b]=dp[a-1][b]+dp[a][b-1];
else if(obstacleGrid[a-1][b]==0&&obstacleGrid[a][b-1]!=0) dp[a][b]=dp[a-1][b];
else if(obstacleGrid[a-1][b]!=0&&obstacleGrid[a][b-1]==0) dp[a][b]=dp[a][b-1];
}
}
return dp[m-1][n-1];
}
};