题目描述
N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,请安排一个合理的方案使得所有人的等待时间之和尽量小。
提示
一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
第一个龙头打水的人总等待时间 = 0 + 1 + (1 + 4) = 6
第二个龙头打水的人总等待时间 = 0 + 2 = 2
第三个龙头打水的人总等待时间 = 0 + 3 = 3
所以总的等待时间 = 6 + 2 + 3 = 11
输入
第一行两个正整数N M 接下来一行N个正整数Ti。
N,M< =1000,Ti< =1000
输出
最小的等待时间之和。(不需要输出具体的安排方案)
样例输入
7 3
3 6 1 4 2 5 7
样例输出
11
https://www.dotcpp.com/oj/problem1523.html
分析:这道题可以换一个角度去看(突发奇想。。。)
拿样例给出的数据来说
7 3
3 6 1 4 2 5 7
最佳发案为:
1号水龙头:1 4 7
2号水龙头:2 5
3号水龙头:3 6
矩阵提取出来看看。。。
1 4 7
2 5
3 6
之后再竖着读一遍就是1 2 3 4 5 6 7
很神奇的就是它正好是升序排列
因此便想到可以用一个二维数组去存储 然后将其中填入合适的数据
寻找最少的时间时,只要寻找同一行并且在该数据前的数之和(不包括该数据)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <map>
#include <queue>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
int a[1005][1005];
int b[1005];
int main()
{
int n,m,i,j,k,t,s,sum=0,flag=0;
memset(a,sizeof(a),0);
cin>>n>>m;
for(i=1;i<=n;i++)
{
cin>>b[i];
}
sort(b+1,b+1+n);
if(n%m==0) t=n/m;
else t=n/m+1;
s=1;
for(i=1;i<=t;i++)
{
for(j=1;j<=m;j++)
{
a[j][i]=b[s];
s++;
if(s>n)
{
flag=1;
break;
}
}
if(flag==1) break;
}
for(i=1;i<=1005;i++)
{
for(j=2;j<=1005;j++)
{
if(a[i][j]==0) break;
else
{
for(k=j-1;k>=1;k--) sum+=a[i][k];
}
}
}
cout<<sum<<endl;
return 0;
}