【Transformer序列分类】Pytorch使用Transformer对一维信号进行分类

程序旨在学习如何使用Transformer对一维序列进行分类,如何调整序列的输入格式和构建网络。

在使用此程序时,建议先大致了解Transformer框架的基本结构:

Transformer模型中有Encoder和Decoder模块。参考了许多使用Transformer做分类的程序,模型中均是只使用了Encoder模块。本程序中,使用了6层Encoder模块和最终的全连接层进行序列分类,没有使用Decoder模块和Embedding模块(Embedding模块是用于文本嵌入的,本程序数据是序列,因此不用做嵌入)。

程序工作如下:

1、加载数据,调整为模型需要的输入格式。原始数据为Excel,400条1*500的序列(心电信号),其中200条正常,200条异常。将每条1*500的信号reshape成10*50,即序列长度10*维度50。这里也可以理解成把序列看成了文本,每个样本由10个单词(序列长度10)组成,每个单词是50个数字(维度50)。这样做是为了满足Transformer的输入格式。

2、构建Transformer模型。其中包含6层的Encoder层和最终的全连接层。

3、训练、测试。显示训练集准确率和Loss变化,计算测试集Acc、Pre、Recall、F1-score,绘制混淆矩阵。

注:程序注释详细,书写规范,容易看懂。包含原始数据和代码,能直接运行,如运行遇到问题可远程帮忙调通。本程序是实现二分类,看懂后也可方便改为多分类。数据为Excel,方便替换为自己的数据,但需要大致看懂并修改程序中的数据维度转化部分和修改模型的输入维度等参数。时间关系仅解答简单问题,谢谢理解。

程序完全由本人手写,整理不易,价格19元。唯一渠道为闲鱼售卖,诚信第一,谴责其他网站高价售卖~

【闲鱼链接】:https://m.tb.cn/h.5wVr0Hs?tk=GvpoWNqIVVv MF7997

如果链接失效的话,可在闲鱼搜索:耐心的等待5283,然后点“用户”即可找到个人主页下的程序。

c2854143d97942e180cb7177caa1f3f6.png9fe147add91e4f44a6e7abd0a086a64d.png99490e76686f4dd3b37d712a9dcfba66.png1fe16d83bcb5493fa26ff2a1a9aa49b8.png

  • 6
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
以下是一个使用PyTorch实现基于Transformer进行一维心电信号时间序列分类的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np # 定义Transformer模型 class TransformerModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout): super(TransformerModel, self).__init__() self.pos_encoder = PositionalEncoding(hidden_size, dropout) self.transformer_encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(hidden_size, num_heads, hidden_size, dropout), num_layers) self.fc = nn.Linear(hidden_size, output_size) def forward(self, src): src = self.pos_encoder(src) output = self.transformer_encoder(src) output = output.mean(dim=1) # 对序列维度求平均 output = self.fc(output) return output # 定义位置编码层 class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) # 加载数据 data = np.load('data.npy') # 数据格式为 (num_samples, seq_len, input_size) labels = np.load('labels.npy') # 标签格式为 (num_samples,) # 划分训练集和测试集 train_data = data[:800] train_labels = labels[:800] test_data = data[800:] test_labels = labels[800:] # 转换为PyTorch的Tensor格式 train_data = torch.from_numpy(train_data).float() train_labels = torch.from_numpy(train_labels).long() test_data = torch.from_numpy(test_data).float() test_labels = torch.from_numpy(test_labels).long() # 定义模型参数 input_size = 1 # 输入特征维度 output_size = 5 # 输出类别数 hidden_size = 64 # 模型隐藏层维度 num_layers = 4 # 模型层数 num_heads = 8 # 注意力头数 dropout = 0.1 # Dropout概率 # 定义模型、损失函数和优化器 model = TransformerModel(input_size, hidden_size, num_layers, num_heads, dropout) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 batch_size = 32 for epoch in range(num_epochs): for i in range(0, len(train_data), batch_size): batch_data = train_data[i:i+batch_size] batch_labels = train_labels[i:i+batch_size] optimizer.zero_grad() outputs = model(batch_data) loss = criterion(outputs, batch_labels) loss.backward() optimizer.step() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 测试模型 with torch.no_grad(): correct = 0 total = 0 for i in range(0, len(test_data), batch_size): batch_data = test_data[i:i+batch_size] batch_labels = test_labels[i:i+batch_size] outputs = model(batch_data) _, predicted = torch.max(outputs.data, 1) total += batch_labels.size(0) correct += (predicted == batch_labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 以上代码中,使用PyTorch实现了一个基于Transformer的模型,并使用交叉熵损失函数和Adam优化器进行训练。在训练过程中,使用了批量梯度下降的方法进行优化,同时使用了测试集对模型进行测试和评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值