研究背景与问题
临床挑战:骨缺损治疗中,传统方法难以精准分析体内骨微观结构及非均质各向异性力学行为,导致假体生物力学适配性不足。
关键瓶颈:临床CT影像分辨率低,无法直接获取松质骨微结构形态参数(如结构张量),且实验测量易受主方向偏离引入系统误差。因此文章提出了一种融合数据驱动与力学建模的创新方法,旨在解决骨缺损诊疗中骨组织力学性能匹配的难题。
创新方法:
(1)多神经网络跨模态映射模型
建立低分辨率临床CT与高精度micro-CT的关联,通过深度学习直接预测,非均匀骨密度分布以及松质骨微结构形态参数(如骨小梁走向、孔隙率等)
(2)各向异性本构建模与参数修正
提出基于骨密度和结构张量的松质骨本构模型,表征其非均质力学行为;采用贝叶斯反演技术识别模型参数,修正实验加载方向偏差导致的系统误差
引言
(1)主要阐述了骨缺损的成因、临床治疗重点及力学刺激对骨重建的关键作用,要点如下:骨缺损成因包括组织病变、创伤或手术导致的骨质缺失。力学刺激的关键是要适度的力学刺激可诱导骨重建,过小刺激无法促进成骨,过大则导致病理性骨生长。诊疗依赖的力学分析包括,弹性模量、疲劳强度、