Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation
摘要:本文旨在开发一种基于有限元分析(FEA)和神经网络(NN)计算的多尺度分层混合模型,通过将介观尺度(骨小梁网络层级)与宏观尺度(全骨层级)耦合,模拟骨重建过程。由于全骨模拟(包括骨小梁层级的3D重建)耗时巨大,本研究仅在宏观层面进行有限元计算,而通过训练的神经网络替代介观尺度所需的有限元代码,以快速预测骨小梁的形态与力学适应性。宏观尺度的骨力学属性根据介观尺度神经网络计算的形态与力学适应性结果进行更新。基于μ-CT影像的数字化建模技术和体素有限元分析被用于捕捉股骨头介观尺度下2 mm³的代表性体积元(RVE)。人工神经网络的输入数据包括骨材料参数、边界条件及施加的应力,输出数据为更新后的骨属性(如弹性模量)和骨小梁参数(如体积分数)。据我们所知,这是首个结合有限元分析与神经网络计算、快速模拟多层级骨适应性变化的模型。
核心目标:
开发多尺度耦