本章将因果关系的一些基本概念公式化,适用于因果模型只包含两个变量的情况。假设这两个变量不是无关紧要的,并且它们的依赖关系不仅仅是由于一个共同的原因,这就构成了一个因果模型。我们简要介绍SCMs、干预措施和反事实。所有这些概念都是在多元因果模型的背景下再次定义的(第六章),我们希望在两个变量中首先遇到这些概念会使这些概念更容易理解。
结构化因果律模型
SCMs是将因果关系和概率关系联系起来的重要工具。
定义3.1 (结构因果模型)SCM C与graph 'C->E’由两个赋值公式组成:
C
:
=
N
C
;
(
3.1
)
E
:
=
f
E
(
C
;
N
E
)
;
(
3.2
)
C := N_C; (3.1)\\ E := f_E(C;N_E); (3.2)
C:=NC;(3.1)E:=fE(C;NE);(3.2)
where NE is independent of NC。
在这个模型中,我们称随机变量C为原因,E为结果。此外,我们称C为E的直接原因,我们还指"C->E"是一个因果图。当我们讨论干预措施时,希望这个符号能澄清并符合读者的直觉,例如在例3。2中。
如果我们同时给定函数fE和噪声分布PNC和PNE,我们可以从这样的模型中取样数据如下:先采样NC、NE,然后评估(3.1),然后是(3.2)。因此,SCM需要一个C和E的联合分布(正式证明见建议6.3)。
干预
正如第1.4.2节所讨论的,我们通常对系统在干预下的行为感兴趣。干预系统诱导出另一种分布,这种分布通常不同于观测分布。如果任何一种干预可以导致系统的任意改变,那么这两个分布()就变得不相关了,我们可以把它们看作两个独立的系统,而不是共同研究这两个系统。
反事实
SCM标准化表示
这本书下面的概念部分对小白不是很好,但是算法部分有自己的理解,但是我就是想学个概念,换书先