01 数据中台定义
数据中台是一种将企业沉睡数据变成数据资产,持续使用数据,产生智能,为业务服务,从而实现数据价值变现的系统和机制。通过数据中台提供的方法和运行机制,形成汇聚整合,提纯加工,建模处理,算法学习,并以共享服务的方式将数据提供给业务使用,从而与业务联动。
结合业务中台的数据生产能力,最终构建数据生产-消费-在生的闭环。为l更好的理解数据中台,我们将其与数据仓库,数据湖,BI。大数据等相关概念进行对比。
1.与数据仓库对比
数据仓库是一个面向主题,集成的,相对稳定的,反应历史变化的数据集合,用于支持管理决策。因此,器重点在于数据的集合。数据仓库可使用维度建模方法论从业务中抽出通用维度于度量,组成数据模型,为决策分析提供通用的数据分析能力。
数据中台与数据仓库相比,至少有四大优势。
1.数据中台强调数据业务化,让数据用起来,满足企业业务数据分析和应用的需求。
2.数据中台梳理的流程比数据仓库建设更加复杂和全面。数据中台增加了以企业的全局视角来梳理数据域的环节,这是数据中台建设中很重要的一环,数据域的梳理正好体现了中台化的能力。
举个例子,新零售场景下,企业的交易场景很多,包括自建商城渠道,第三方电商渠道,外卖订单渠道,线下门店渠道等。建设数据中台时就需要规划处一个交易域,此交易域要抽象处各种渠道的业务流程,并能覆盖线上线下运营是需要考核的维度和度量
因此数据中台建设过程中要更多从企业全局出发 从人 货 场 多维度打通数据,真正做到无消费者从哪个渠道进来,都能洞察其与本企业的接触轨迹。
而数据仓库的建设则是相对单一 专注于维度模型如如何设计,如何拆解指标和维度,却很少关注基于人货场这些主体进行实体拉通,然后做出全局的画像数据供前端业务调用。
3.数据中台建设的范畴远远大于数据仓库的建设。除了完成数据仓库的建模,还需要制定完善的数据治理方案,甚至在建设的过程中需要成立专门的数据治理委员会来促成复杂的数据治理工作。
在数据中台的规划阶段就需要去主动迎合业务,需要全面梳理那些业务场景需要利用数据的赋能才能形成业务闭环,因此,在健身数据中台的同时就必须着眼于业务场景的赋能。