《Online Object Tracking: A Benchmark》简述

引言

  虽然目标跟踪已经研究了几十年,但是光照背景、遮挡等问题,并不存在能够成功处理所有场景问题的跟踪方法,因此评估最先进跟踪器的性能至关重要,以展示他们的优缺点,并帮助确定该领域的未来研究方向,设计更具有鲁棒性的算法。

相关工作

  从几个主要的模块上来回顾近年来的目标跟踪算法:目标表示方式、搜索机制和模型更新。另外,介绍一些基于联合几个跟踪器或者挖掘上下文信息的跟踪方法。

评估算法和数据集

  1)评价的算法:
在这里插入图片描述
  以及mean shift(MS-V), template matching (TM-V), ratio shift(RS-V) andpeak difference (PD-V) 方法。
  2)评价的数据集
在这里插入图片描述
3)评价的视频属性
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值