关于SIoU《SIoU Loss: More Powerful Learning for Bounding Box Regression Zhora Gevorgyan 》的一些看法及代码实现

最近很多公众号都在推这篇文章,但是我在阅读的过程中产生了一些问题,由于代码未开源,理解可能不正确,因此先记录一下,等开源之后对照代码再更深地去理解,也希望如果有大佬看见这篇文章的时候,能对我不成熟的看法给予一些意见。
文章实验的最终损失函数计算如下:
!
其中 L c l s L_{cls} Lcls是用了focal loss, W b o x W_{box} Wbox W c l s W_{cls} Wcls权重参数是根据遗传算法计算得来的, L b o x L_{box} Lbox是本文所提的SIoU损失,计算如下:
在这里插入图片描述

主要是涉及到四部分损失:角度损失 、距离损失 、形状损失 、IoU 损失
1.角度损失
在这里插入图片描述

这里作者认为,可以考虑角度因素,首先使得预测框回归到与真值框同一水平线或者垂直线上,这点我很认同,可以加速收敛,作者是通过以下公式评估损失的
在这里插入图片描述
该公式由两部分组成,第一部分是 1 − 2 s i n 2 ( x ) 1-2sin^2(x) 12sin2(x),其实也就是 c o s ( 2 x ) cos(2x) cos(2x),使得对于 x >

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值