DCNv2简述

引言

  由尺寸,位置,视野,部分变形成为目标识别检测中的一个挑战。DCNv1 介绍了两个模型,
  (1)可变形卷积:标准卷积网格采样点的位置都是前面预处理feature map学习的偏移。
  (2)可变形RoIpooling,其中,偏移学习RoIPooling中的bins的位置。将上述两个模型嵌入到神经网络中可以按照目标物的特性进行特征表示,通过变形采样及池化模式来适应目标物体的结构。基于上述方法,大幅度提高了目标检测的效果。
为了理解可变形卷积,通过在VOC图像上采样点的位置上增加偏移,并可视化其引起的感受野的变化。观察发现,激活单元的采样位置多聚集在目标物体附近。然而,对目标物体的覆盖并不准确,存在感兴趣区域之外的采样点。通过COCO数据集对图像的空间支持做了深入的分析发现,上述覆盖不准确的现象更加明显,这些发现表明对可变形卷积学习还有更多的潜力。
  本文提出的新型可变形卷积网络,成为Deformable ConvNet V2,通过增强的建模能力来对可变形卷积进行学习。主要通过两部分来增强模型:
  (1)扩大网络中可变形卷积的使用。使用更多偏移学习的卷积层,使DCNv2在更广的特征层级上进行采样。
  (2)可变形卷积模块的调制机制,每个采样点被学习过的偏移及特征的幅度同时进行调制。因此,网络能够改变样本点的空间分布,同时可以控制其相对影响。
  为了进行有效的训练,受神经网络中知识蒸馏相关工作的启发。本文利用了“教师”网络,在进行训练时,其提供相应的指导。本文使用R-CNN作为教师网络。由于R-CNN用于对crop后的图像内容进行分类的网络,因此,不受感兴趣区域之外的信息影响。DCNv2为了模仿这个属性,在训练时增加了一个“特征模仿损失”,用于学习与R-CNN一致的相关特征。基于此方法,增强后的可变形采样为DCNv2提供了较强的训练信号。
  经过上述改变后,DCNv2仍为轻量级同时可以嵌入到常规网络中,本文主要嵌在Faster R-CNN及Mask R-CNN上,在COCO数据集的检测和分割任务上进行实验,均有较大改进。

相关工作

  Deformation Modeling:在深度学习时代之前,值得注意的作品包括尺度不变特征变换SIFT (《Object recognition from local scale-invariant features》)、ORB (《Orb: an efficient alternative to sift or surf》),以及DPM(《Object detection with discriminatively trained part-based models》)。这些作品受到手工特征的劣势限制,
  Relation Networks and Attention Modules:最近,《Relation networks for object detection》和《Relation networks for object detection》的并发工作成功扩展了与图像域的关系网络和注意模块,分别用于建模长期目标-目标和像素-像素关系。在《Learning region features for o

多语种循环翻译请求 请按照以下顺序执行翻译任务,并在每个步骤完成后进行语义验证: 第一轮翻译(中→日) 输入内容:[森林火灾作为具有高频次、突发性特征的重大安全隐患,其初期阶段呈现的目标特征复杂性对智能检测技术提出严峻挑战。本研究聚焦火灾初期的动态目标检测难题,针对火焰与烟雾的形态不稳定性、环境干扰敏感性及小目标特征弱显性等问题,提出基于深度学习的多维度优化解决方案。研究内容主要涵盖以下创新维度: (1)数据集构建:构建标准化的火灾检测基准数据集,通过空间分布均衡化处理增强样本的场景泛化能力,为模型迁移至真实林区场景提供数据支撑。 (2)自适应模型架构设计:以YOLOv8s为基准网络,系统评估不同规模模型架构的检测效率与精度平衡性。通过集成混合注意力机制(CBAM)实现通道-空间双维特征重标定,增强烟雾纹理与火焰光谱的特征表征能力;引入可变形卷积网络(DCNv2)构建动态感受野机制,提升模型对烟雾扩散形态的几何适应性;采用加权交并比损失函数(WIoU)建立动态样本加权策略,优化复杂背景下的梯度传播效率。 (3)多模态性能验证:通过消融实验验证模块级改进的有效性,实验表明CBAM模块使林区晨雾场景误报率降低41.2%,DCNv2提升小目标(<32×32像素)检测精度13.5%。在跨模型对比中,改进模型的平均精度均值(mAP@0.5)达到90.09%,较基准YOLOv8提升2.15个百分点,实现精度-速度-鲁棒性的协同优化。 (4)端到端系统实现:研发支持多模态输入的火灾实时检测系统,集成改进模型实现图像、视频流及实时摄像数据的毫秒级处理(单帧≤20ms)。系统在测试集上漏检率稳定控制在4.7%以内,满足林火监测的时效性与可靠性需求。 本研究通过算法创新与工程化实践,为森林火灾智能监测提供了可扩展的技术范式,对降低碳汇损失、提升生态保护效能具有显著应用价值。] 要求:保持专业术语准确性,日语文法规范,使用敬体(です・ます形) 验证点:输出后请用中文简述是否保留原文核心信息 第二轮翻译(日→英) 输入内容:[自动承接上一步日文结果] 要求:使用标准书面英语,保留日语文本中的文化特定表达 验证点:输出后标注可能存在的语义偏差风险点(如有) 第三轮翻译(英→中) 输入内容:[自动承接上一步英文结果] 要求:采用与原文相同的中文语体(如原为学术体则保持学术性) 验证点:输出后与原始中文进行逐段对照标记差异 最终交付要求 1.以markdown格式呈现完整的四语对照表(原始中文→日译→英译→终版中文) 2.用表格形式突出显示关键术语的演变过程 3.附注翻译过程中的语义损耗评估报告
最新发布
03-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值