sklearn中KFold,StratifiedKFold的区别

 StratifiedKFold不会出错 

import numpy as np
from sklearn import model_selection
from sklearn.model_selection import KFold,StratifiedKFold
x = np.array(list(range(10)))
y = np.array(list([0]*5+[1]*5))

# kfold = KFold(n_splits=5,shuffle=False)
# for train, test in kfold.split(x,y):
#     print("%s %s %s %s" % (x[train], y[train],x[test],y[test]))

kfold = StratifiedKFold(n_splits=5, shuffle=False)
for train, test in kfold.split(x,y):
    print("%s %s %s %s" % (x[train], y[train],x[test],y[test]))

 StratifiedKFold会出错

import numpy as np
from sklearn import model_selection
from sklearn.model_selection import KFold,StratifiedKFold
x = np.array(list(range(10)))
y = np.array(list(range(10)))
# y = np.array(list([0]*5+[1]*5))

# kfold = KFold(n_splits=5,shuffle=False)
# for train, test in kfold.split(x,y):
#     print("%s %s %s %s" % (x[train], y[train],x[test],y[test]))

kfold = StratifiedKFold(n_splits=5, shuffle=False)
for train, test in kfold.split(x,y):
    print("%s %s %s %s" % (x[train], y[train],x[test],y[test]))

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值