sklearn.CountVectorizer

该文展示了如何使用scikit-learn的CountVectorizer对文本数据进行预处理。通过对[lloveyou,dog,cat,ilikebaskerball,ilikeapple]等词的处理,展示了如何创建词频矩阵并提取关键词。同时,显示了vocabulary_属性和特征名称,以及频次统计。
摘要由CSDN通过智能技术生成
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
cv = CountVectorizer()

data = ['l love you', 'dog', 'cat', 'i like baskerball', 'i like apple']
cv_fit = cv.fit_transform(data)
print(cv.transform(['l love YOU']))
print(cv.vocabulary_)

# 获取语料频次
print(cv.get_feature_names())
print(cv_fit.toarray())
print(cv_fit.toarray().sum(axis=0))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值