Numpy曲线拟合求取极值点

import json
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import make_interp_spline
from scipy import signal

def prepare(data):
    data = data[1:-1].split(',')
    xs, ys = [], []
    for i in data:
        if 'x:' in i:
            x = i.strip().split(' ')[1]
            y = i.strip().split(' ')[3]
            xs.append(float(x) * 100 + 100)
            ys.append(float(y) * 100)
    return np.asarray(xs), np.asarray(ys)

def extrema(x, yvals):
    print('Extreme max x:', x[signal.argrelextrema(yvals, np.greater)[0]])
    print('Extreme min x:', x[signal.argrelextrema(yvals, np.less)[0]])

    plt.plot(x[signal.argrelextrema(yvals, np.greater)[0]], yvals[signal.argrelextrema(yvals, np.greater)], 'o', markersize=10) #极大值点
    plt.plot(x[signal.argrelextrema(yvals, np.less)[0]], yvals[signal.argrelextrema(yvals, np.less)],'+', markersize=10) #极小值点

def polyder(yvals):
    yyyd = np.polyder(yvals, 1) # 1表示一阶导
    print('grad=0:', yyyd)

flag = {
    '1': 'resultDataSmallWave',
    '2': 'resultDataReady',
    '3': 'resultDataTest',
    '4': 'resultDataNextWave',
    '5': 'resultDataSmall'
    }

with open('checkResultData.json','r',encoding='utf-8') as f:
    file = json.load(f)
    x, y = prepare(file[flag['2']])

# 最小二乘法计算拟合多项式系数
z = np.polyfit(x, y, 20)
# yvals = np.polyval(z, x)
p = np.poly1d(z)
yvals = p(x)

plt.legend(loc=4)
plt.plot(x, y, '*', label='original values')
plt.plot(x, yvals,'r',label='polyfit values')
extrema(x, yvals)
plt.show()

 

好的,我可以为您提供一些关于使用Python拟合周期性递增递减的数据曲线的建议。 首先,您可以使用Python中的numpy和matplotlib库来处理数据和绘制图形。接下来,您可以使用scipy库中的optimize.curve_fit函数来拟合数据。 以下是一个简单的例子,假设我们有一组周期性递增递减的数据,且我们想要拟合找到其极值点: ``` python import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt # 定义我们要拟合的函数 def func(x, a, b, c, d): return a * np.sin(b * x + c) + d # 构造数据 x_data = np.linspace(0, 2*np.pi, 50) y_data = 2 * np.sin(2 * x_data + np.pi/2) + 1 # 绘制原始数据 plt.plot(x_data, y_data, 'b-', label='data') # 使用curve_fit函数拟合数据 popt, pcov = curve_fit(func, x_data, y_data) # 绘制拟合曲线 x_fit = np.linspace(0, 2*np.pi, 100) y_fit = func(x_fit, *popt) plt.plot(x_fit, y_fit, 'r-', label='fit') # 找到极值点 from scipy.signal import argrelextrema extrema_idx = argrelextrema(y_fit, np.greater)[0] extrema_x = x_fit[extrema_idx] extrema_y = y_fit[extrema_idx] plt.plot(extrema_x, extrema_y, 'ro', label='extrema') # 显示图例绘制图形 plt.legend() plt.show() ``` 在这个例子中,我们使用了一个简单的正弦函数来拟合数据,使用`argrelextrema`函数找到了极值点。您可以根据您的数据和需要来选择不同的函数来拟合数据。 希望这个例子能对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值