现代数字信号处理——功率谱和信号频率估计

如何使用随机过程 u ( n ) 的 N u(n)的N u(n)N个观测数据 u N ( 0 ) , u N ( 1 ) , ⋯   , u N ( N − 1 ) u_N(0),u_N(1),\cdots,u_N(N-1) uN(0),uN(1),,uN(N1)估计出随机过程的功率谱 S ( w ) S(w) S(w)。估计方法分为三个流派:

  • 1.经典功率谱估计
  • 2.参数模型法估计
  • 3.基于相关矩阵特征分解的信号频率估计

一、经典功率谱估计

\quad 基于传统傅里叶变换的思想,有BT法和周期图法及其相关改进。

1、BT法

\quad 已知N个观测值 u N ( n ) u_N(n) uN(n),则 u ( n ) u(n) u(n)的自相关函数估计值为 r ^ ( m ) = 1 N ∑ n = 0 N − 1 u N ( n ) n N ∗ ( n − m ) , ∣ M ∣ ≤ N − 1 \hat{r}(m)=\frac{1}{N}\sum_{n=0}^{N-1}u_N(n)n^*_N(n-m),|M|\le N-1 r^(m)=N1n=0N1uN(n)nN(nm),MN1根据维纳=辛钦定理可以得到功率谱估计值: S ^ B T ( w ) = ∑ m = − M M r ^ ( m ) e − j w m \hat{S}_{BT}(w)=\sum_{m=-M}^{M}\hat{r}(m)e^{-jwm} S^BT(w)=m=MMr^(m)ejwm \quad BT法需要先计算自相关函数估计值,再以此为依据估计功率谱密度,称为间接法估计。显然这是一个 n 2 n^2 n2级别的算法,如果观测点数目较多则难以计算,因此使用FFT加速计算过程。
\quad 接下来,我们来看看自相关函数的估计性能,即估计值与真实值的差距,已知 r ^ ( m ) = 1 N ∑ n = 0 N − 1 u N ( n ) n N ∗ ( n − m ) r ( m ) = l i m N → ∞ 1 N ∑ n = 0 N − 1 u N ( n ) n N ∗ ( n − m ) 故 而 , E { r ^ ( m ) } = N − ∣ m ∣ N r ( m ) \hat{r}(m)=\frac{1}{N}\sum_{n=0}^{N-1}u_N(n)n^*_N(n-m)\\r(m)=lim_{N\rightarrow \infty}\frac{1}{N}\sum_{n=0}^{N-1}u_N(n)n^*_N(n-m)\\ 故而,E\{\hat{r}(m)\}=\frac{N-|m|}{N}r(m) r^(m)=N1n=0N1uN(n)nN(nm)r(m)=limNN1n=0N1uN(n)nN(nm)E{r^(m)}=NNmr(m)

  • 1.固定 ∣ m ∣ |m| m,当 N → ∞ N\rightarrow \infty N时, E { r ^ ( m ) } = r ( m ) E\{\hat{r}(m)\}=r(m) E{r^(m)}=r(m) r ^ ( m ) \hat{r}(m) r^(m)是对 r ( m ) r(m) r(m)的渐进无偏估计
  • 2.固定 N N N ∣ m ∣ |m| m越接近 N N N时估计的偏差越大

\quad 另一种估计是 r ^ ( m ) = 1 N − ∣ m ∣ ∑ n = 0 N − 1 u N ( n ) n N ∗ ( n − m ) \hat{r}(m)=\frac{1}{N-|m|}\sum_{n=0}^{N-1}u_N(n)n^*_N(n-m) r^(m)=Nm1n=0N1uN(n)nN(nm),此时 E { r ^ ( m ) } = r ( m ) E\{\hat{r}(m)\}=r(m) E{r^(m)}=r(m),是无偏估计。

2、周期图法

\quad r ^ ( m ) = 1 N ∑ n = 0 N − 1 u N ( n ) n N ∗ ( n − m ) = 1 N u N ( m ) u N ∗ ( − m ) 两 边 取 傅 里 叶 变 换 , 得 到 S ^ P E R = 1 N ∣ U N ( w ) ∣ 2 , U N ( w ) = ∑ n = 1 N − 1 u N ( n ) e − j w n \hat{r}(m)=\frac{1}{N}\sum_{n=0}^{N-1}u_N(n)n^*_N(n-m)=\frac{1}{N}u_N(m)u^*_N(-m)\\两边取傅里叶变换,得到\hat{S}_{PER}=\frac{1}{N}|U_N(w)|^2,U_N(w)=\sum_{n=1}^{N-1}u_N(n)e^{-jwn} r^(m)=N1n=0N1uN(n)nN(nm)=N1uN(m)uN(m)S^PER=N1UN(w)2,UN(w)=n=1N1uN(n)ejwn

\quad 周期法和BT法异同:

  • M = N − 1 M=N-1 M=N1时二者相同时一样
  • M < N − 1 M<N-1 M<N1时BT法相当于是对长度为 2 N − 1 2N-1 2N1 r ^ ( m ) \hat{r}(m) r^(m)进行了截断处理,即加了一个矩形窗,所以BT法相当于是对周期法的平滑。

3、Bartlett法

\quad 周期图法估计出的谱性能不好,当观测数据太长时谱的曲线起伏加剧;数据太短时分辨率不好(观测点越多分辨率越高)。Bartlett法的思想是:将N个观测点分为L段,每段长度为 M = N / L M=N/L M=N/L。对于每段数据先使用周期图法求其功率,再对每段功率谱结果平均,得到平均周期图。
\quad Bartlett法功率谱估计频率分辨率下降为原来的 1 / L 1/L 1/L,方差也减小为原来的 1 / L 1/L 1/L。因此,Bartlett估计的功率谱比周期图法估计的功率谱更加平滑。

4、Welch法

\quad Welch法又称修正平均周期法,是对Bartlett法的改进。Welch法也是对N个观测点分段,与Bartlett不同的是,Welch法允许各段的信号点有所交叠,通常取相邻两端信号交叠的一半。若每段信号长度为 M M M,信号被划分为 L = N − M / 2 M / 2 L=\frac{N-M/2}{M/2} L=M/2NM/2段。将每段信号与窗函数 w ( n ) w(n) w(n)相乘后得到每段的功率谱估计,最后加权得到功率谱估计。
\quad Welch法运行分段数据样本的重叠,于是可以得到更多的周期图估计,从而进一步减小功率谱密度的方差。通过窗函数的加权,可以减小样本段之间的相关性。
在这里插入图片描述

二、参数模型

\quad 参数模型功率谱估计的基本思想是,认为随机过程 u ( n ) u(n) u(n)就是白噪声通过LTI离散时间系统得到的响应,利用观测样本估计出模型参数,也就得到了功率谱 S ( w ) = ∣ H ( w ) ∣ 2 σ v 2 S(w)=|H(w)|^2\sigma_v^2 S(w)=H(w)2σv2
在这里插入图片描述
\quad 规则过程的参数模型有三种:

  • AR参数模型
  • MA参数模型
  • ARMA参数模型

1、AR(P)参数模型

\quad AR模型的输入 v ( n ) v(n) v(n)是零均值,方差为 σ 2 \sigma^2 σ2的白噪声,输出为 u ( n ) u(n) u(n),满足如下差分方程: u ( n ) = − ∑ k = 1 p a k u ( n − k ) + v ( n ) u(n)=-\sum_{k=1}^p a_ku(n-k)+v(n) u(n)=k=1paku(nk)+v(n)。阶数为 P P P,可以推得:

  • m > 0 m>0 m>0 r u v ( m ) = 0 r_{uv}(m)=0 ruv(m)=0
  • m = 0 m=0 m=0 r u v ( 0 ) = σ 2 r_{uv}(0)=\sigma^2 ruv(0)=σ2

\quad 进而,可以推得AR模型的正则方程,也叫Yule-Walker方程:
在这里插入图片描述
\quad 上述式子等价于:
在这里插入图片描述
\quad 这样就可以求出参数 a k a_k ak u ( n ) u(n) u(n)功率谱:
在这里插入图片描述
\quad 最终算法模型如下:
在这里插入图片描述
\quad 因为矩阵求逆gao时间复杂度很高,一般使用AR参数模型的Levinson-Durbin迭代算法来进行求解。利用低阶推高阶。
\quad AR模型阶数的选择对信号功率谱估计的质量有很大的影响,阶数越高分辨率更高。

AR模型性能

\quad BT法分辨率随信号长度增加而提高,而AR模型避免了窗函数的影响,因此可以得到高的谱分辨率,且与真实值差距很小。AR模型是否稳定取决于 u ( n ) u(n) u(n)。对于高斯信号,最大熵谱估计与AR模型等价。缺点是质量受阶数p的影响,阶次太低,谱太平滑,反映不出谱峰。阶次选得过大可能会产生虚
假的谱峰。

2、MA模型

\quad MA(q)为q阶模型,方程为 u ( n ) = v ( n ) + ∑ k = 1 q b k v ( n − k ) u(n)=v(n)+\sum_{k=1}^qb_kv(n-k) u(n)=v(n)+k=1qbkv(nk),可以计算得到 r u ( m ) = σ 2 ∑ k = 0 q − m b k ∗ b k + m , m = 0 , 1 , ⋯   , q r_u(m)=\sigma^2\sum_{k=0}^{q-m}b_k^*b_{k+m},m=0,1,\cdots,q ru(m)=σ2k=0qmbkbk+m,m=0,1,,q。这是一个非线性方程,求解复杂,因此可以用高阶AR模型来近似MA模型。
\quad 无穷阶AR模型为 H ∞ = 1 1 + ∑ k = 1 ∞ a k z − k H_{\infty}=\frac{1}{1+\sum_{k=1}^\infty a_kz^{-k}} H=1+k=1akzk1,等价于q阶MA模型为 H q ( z ) = 1 + ∑ k = 1 q b k z − k = 1 1 + ∑ k = 1 ∞ a k z − k H_q(z)=1+\sum_{k=1}^qb_kz^{-k}=\frac{1}{1+\sum_{k=1}^\infty a_kz^{-k}} Hq(z)=1+k=1qbkzk=1+k=1akzk1,因此 ( 1 + ∑ k = 1 q b k z − k ) ( 1 + ∑ m = 1 ∞ a m z − m ) = 1 (1+\sum_{k=1}^qb_kz^{-k})(1+\sum_{m=1}^\infty a_mz^{-m})=1 (1+k=1qbkzk)(1+m=1amzm)=1
\quad 可以根据 u ( n ) u(n) u(n)估计AR模型的参数 a m a_m am,根据 e ( m ) = a ^ m ( p ) + ∑ k = 1 q b k a ^ m − k ( p ) a ^ m ( p ) = e ( m ) − ∑ k = 1 q b k a ^ m − k ( p ) e(m)=\hat{a}_m^{(p)}+\sum_{k=1}^qb_k\hat{a}_{m-k}^{(p)}\\\hat{a}_m^{(p)}=e(m)-\sum_{k=1}^qb_k\hat{a}_{m-k}^{(p)} e(m)=a^m(p)+k=1qbka^mk(p)a^m(p)=e(m)k=1qbka^mk(p)可以通过将 e ( m ) e(m) e(m)看作AR模型的输入,计算 a m a_m am的相关函数来估计 b k b_k bk的值。
\quad 根据正则方程,令 m = 0 m=0 m=0可以得到输入白噪声方差的估计为 σ ^ 2 = r u ( 0 ) ∑ k = 0 q ∣ b ^ k ∣ 2 \hat{\sigma}^2=\frac{r_u(0)}{\sum_{k=0}^q|\hat{b}_k|^2} σ^2=k=0qb^k2ru(0)。总结一下,MA模型求解过程如下:
在这里插入图片描述

3、ARMA模型

\quad ARMA(p,q)模型综合AR和MA模型,表达式为 u ( n ) = − ∑ k = 1 p a k u ( n − k ) + ∑ k = 1 q b k v ( n − k ) u(n)=-\sum_{k=1}^pa_ku(n-k)+\sum_{k=1}^qb_kv(n-k) u(n)=k=1paku(nk)+k=1qbkv(nk)
在这里插入图片描述
在这里插入图片描述

三、频率估计

1、MVDR

\quad 三个常用的梯度:

  • Δ J ( w ) = 2 ∂ ∂ w ∗ ( c H w ) = 0 \Delta J(w)=2\frac{\partial}{\partial w^*}(c^Hw)=0 ΔJ(w)=2w(cHw)=0
  • Δ J ( w ) = 2 ∂ ∂ w ∗ ( w H c ) = 2 c \Delta J(w)=2\frac{\partial}{\partial w^*}(w^Hc)=2c ΔJ(w)=2w(wHc)=2c
  • Δ J ( w ) = 2 ∂ ∂ w ∗ ( w H R w ) = 2 R w \Delta J(w)=2\frac{\partial}{\partial w^*}(w^HRw)=2Rw ΔJ(w)=2w(wHRw)=2Rw

\quad M抽头的FIR滤波器如下:
在这里插入图片描述
\quad 输入为随机过程 x ( n ) x(n) x(n),输出为 y ( n ) = ∑ i = 0 M − 1 w i ∗ x ( n − i ) = w H x ( n ) = x T ( n ) w ∗ y(n)=\sum_{i=0}^{M-1}w_i^*x(n-i)=w^Hx(n)=x^T(n)w^* y(n)=i=0M1wix(ni)=wHx(n)=xT(n)w,输出的平均功率为 P = E { ∣ y ( n ) ∣ 2 } = E { w H x ( n ) x H ( n ) w } = w H R w P=E\{|y(n)|^2\}=E\{w^Hx(n)x^H(n)w\}=w^HRw P=E{y(n)2}=E{wHx(n)xH(n)w}=wHRw,其中 R = E { x ( n ) x H ( n ) } R=E\{x(n)x^H(n)\} R=E{x(n)xH(n)}
\quad 假设滤波器输入信号 x ( n ) = ∑ k = 1 K α k e j w k n + v ( n ) = ∑ i = 1 K α ( w i ) e j w i n + v ( n ) x(n)=\sum_{k=1}^K\alpha_ke^{jw_kn}+v(n)=\sum_{i=1}^K\alpha(w_i)e^{jw_in}+v(n) x(n)=k=1Kαkejwkn+v(n)=i=1Kα(wi)ejwin+v(n)。设感兴趣的期望信号是角频率为 w 1 w_1 w1的复正弦信号,则选择滤波器权向量 w w w的原则是,使复正弦信号 e j w 1 n e^{jw_1n} ejw1n无失真地通过滤波器,而尽量抑制其余频率的信号和噪声。因此,滤波器权重 w w w满足:

  • w H a ( w 1 ) = 1 w^Ha(w_1)=1 wHa(w1)=1
  • P = w H R w P=w^HRw P=wHRw最小化

\quad 利用拉格朗日乘子法,可以求得最优权向量为 w ^ M V D R = R ^ − 1 a ( w ) a H ( w ) R ^ − 1 a ( w ) \hat{w}_{MVDR}=\frac{\hat{R}^{-1}a(w)}{a^H(w)\hat{R}^{-1}a(w)} w^MVDR=aH(w)R^1a(w)R^1a(w)滤波器最小输出功率正相关于 P M V D R ( w ) = 1 a H ( w ) R ^ − 1 a ( w ) P_{MVDR}(w)=\frac{1}{a^H(w)\hat{R}^{-1}a(w)} PMVDR(w)=aH(w)R^1a(w)1,这也是MVDR谱估计。
在这里插入图片描述
\quad MVDR谱分辨率随着抽头数M 的增大而提高;MVDR不是信号的功率谱,但是它描述了信号功率的相对强度

2、相关矩阵特征分解

信号子空间和噪声子空间

\quad x ( n ) = ∑ k = 1 K α k e j w k n + v ( n ) = A s ( n ) + v ( n ) x(n)=\sum_{k=1}^K\alpha_ke^{jw_kn}+v(n)=As(n)+v(n) x(n)=k=1Kαkejwkn+v(n)=As(n)+v(n) R = E { x ( n ) x H ( n ) } = A P A H + E { v ( n ) x v ( n ) } = A P A H + σ v 2 I 其 中 , P = E { s ( n ) x s ( n ) } = d i a g { ∣ α 1 ∣ 2 , ∣ α 1 ∣ 2 , ⋯   , ∣ α k ∣ 2 } R=E\{x(n)x^H(n)\}\\=APA^H+E\{v(n)x^v(n)\}\\=APA^H+\sigma_v^2I \\ 其中,P=E\{s(n)x^s(n)\}=diag\{|\alpha_1|^2,|\alpha_1|^2,\cdots,|\alpha_k|^2\} R=E{x(n)xH(n)}=APAH+E{v(n)xv(n)}=APAH+σv2IP=E{s(n)xs(n)}=diag{α12,α12,,αk2}

\quad 矩阵 A P A H APA^H APAH共有k个非零特征值,对其进行特征值分解,可以得到 A P A H = ∑ i = 1 k λ i u i u i H APA^H=\sum_{i=1}^k\lambda_iu_iu_i^H APAH=i=1kλiuiuiH
信号子空间 E s E_s Es:由特征向量 u 1 , ⋯   , u k u_1,\cdots,u_k u1,,uk生成的子空间, E s = s p a n { u 1 , ⋯   , u k } E_s=span\{u_1,\cdots,u_k\} Es=span{u1,,uk}
噪声子空间 E N E_N EN:由特征向量 u K + 1 , ⋯   , u M u_{K+1},\cdots,u_{M} uK+1,,uM生成的子空间, E N = s p a n { u K + 1 , ⋯   , u M } E_N=span\{u_{K+1},\cdots,u_M\} EN=span{uK+1,,uM}

MUSIC算法

\quad 信号频率向量 a ( w k ) a(w_k) a(wk)与噪声子空间的特征向量正交,有 ∑ i = K + 1 M ∣ a H ( w k ) u i ∣ 2 \sum_{i=K+1}^M|a^H(w_k)u_i|^2 i=K+1MaH(wk)ui2,用噪声子空间的向量构成矩阵 G = [ u K + 1 , ⋯   , u M ] G=[u_{K+1},\cdots,u_M] G=[uK+1,,uM],可得 a H ( w k ) G G H a ( w k ) = 0 P ^ M U S I C = 1 a H ( w k ) G G H a ( w k ) a^H(w_k)GG^Ha(w_k)=0\\ \hat{P}_{MUSIC}=\frac{1}{a^H(w_k)GG^Ha(w_k)} aH(wk)GGHa(wk)=0P^MUSIC=aH(wk)GGHa(wk)1信号的角频率由几个峰值确定。
在这里插入图片描述

Root-MUSIC

\quad 定义向量 a ( z ) = [ 1 , z − 1 , ⋯   , z − ( M − 1 ) ] T a(z)=[1,z^{-1},\cdots,z^{-(M-1)}]^T a(z)=[1,z1,,z(M1)]T ,求出 a T ( z − 1 ) G G H a ( z ) = 0 a^T(z^{-1})GG^Ha(z)=0 aT(z1)GGHa(z)=0的根。

3、Pisarenko谐波提取方法

\quad x ( n ) = ∑ k = 1 K α k e j w k n + v ( n ) x(n)=\sum_{k=1}^K\alpha_ke^{jw_kn}+v(n) x(n)=k=1Kαkejwkn+v(n),求解 f ( z ) = u 0 + u 1 z + ⋯ + u K z K = 0 f(z)=u_0+u_1z+\cdots+u_Kz^K=0 f(z)=u0+u1z++uKzK=0,得到K个根即为信号频率的估计。
在这里插入图片描述
\quad Pisarenko谐波分解方法还可以估计出各频率信号的功率和噪声功率,噪声功率估计为 σ v 2 = r ( 0 ) − ∑ k = 1 K ∣ α k ∣ 2 \sigma_v^2=r(0)-\sum_{k=1}^K|\alpha_k|^2 σv2=r(0)k=1Kαk2

4、ESPRIT算法

\quad 计算广义特征值,很复杂,不考应该

四、信号源个数

1、AIC准则

2、MDL准则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值