前言
书接上回,幅值谱和相位谱是信号频域分析的一个重要手段。在这其中,幅值谱和相位谱主要针对满足傅里叶变换条件的信号,比如能量信号。而工程和实际中接触的信号往往都是随机信号,随机信号不满足FFT变换的条件(在宋老师的书中(见参考链接)提到随机信号不满足傅里叶变换绝对可积条件),不能直接进行FFT变换,顾一般不采用幅值谱和相位谱进行分析。在目前故障诊断领域,对相位谱的关注不多,所以功率谱可以看出对标幅值谱的存在。
关于频域分析中的一些频谱、能量谱、功率谱、功率谱密度、自功率谱、互功率谱、随机信号的定义等等,请跳转下面这条链接了解:
信号处理(频谱,能量谱,功率谱)--学习笔记
https://blog.csdn.net/weixin_45647721/article/details/128008836
友情提示:上面链接的内容无法保证一定正确,请根据自己理解,自行判断。不过这是冷漠看了这么多科普,说的比较清晰、比较准确的一个。
1.内容概括
本文介绍信号频域分析中功率谱和功率谱密度(PSD)的相关代码和分析过程!
请注意该功率谱和功率谱密度采用的是非参数法中的周期图法!周期图法!周期图法!!!
虽然本文提供了功率谱和功率谱密度的封装函数,但是推荐用Matlab的periodogram函数,本文只是重现了这个函数的结果,让大家更加透彻的理解。
除此之外,估计PSD的方法matlab提供了很多,如参数法、子空间方法等等。Matlab对应的函数具体如下:
有需要的小伙伴自行阅读哈!!!
该内容参考了一些资料:
1、书籍:MATLAB数字信号处理85个实用按比例——入门到进阶 宋知用 编著
2、书籍:从这里学NVH噪声、振动、模态分析的入门与进阶 谭祥军 编著
3、书籍:机械工程测试技术基础 第3版 熊诗波编著
4、matlab官网的一些例子和教程:
1)频域分析实践介绍
https://ww2.mathworks.cn/help/signal/ug/practical-introduction-to-frequency-domain-analysis_zh_CN.html#d126e17836
2)使用 FFT 获得功率频谱密度估计
https://ww2.mathworks.cn/help/signal/ug/power-spectral-density-estimates-using-fft.html
3)频谱估计
https://ww2.mathworks.cn/help/signal/nonparametric-spectral-estimation.html
5、了解功率谱密度和功率谱
https://www.bilibili.com/video/BV1ui421Z7XP/?spm_id_from=333.337.search-card.all.click&vd_source=50b116844fc6444ae380b4347979702f(一个涵盖了幅值谱、功率谱和功率谱密度的视频,强烈推荐!!!)
6、一些有价值的科普(公众号搜索),理论讲述更加全面
1)信号处理进阶之路,文章名称:能量域特征提取方法https://mp.weixin.qq.com/s/W-qsi0e1aWC3pz3c4dy8kA
2)看海的城堡,文章名称:信号频域分析方法的理解(频谱、能量谱、功率谱和倒频谱):https://mp.weixin.qq.com/s/RpCoRAiZlo96wWYgW09lnw
3)声振之家,文章名称:几种经典功率谱估计方法的实现(Matlab)及其局限性https://mp.weixin.qq.com/s/xvYS-YnUtlXntRsKXAkkMQ
代码采用了Matlab 2024a进行运行,欢迎大家测试和提出问题!
2.理论铺垫
功率谱和功率谱密度是针对随机信号而言,那么首先要认清什么是随机信号?
借用熊老师关于信号分类的定义,如下图:
确定性信号:可以表示为一个确定的时间函数,因