信号处理—频域分析(功率谱、功率谱密度)

前言

书接上回,幅值谱和相位谱是信号频域分析的一个重要手段。在这其中,幅值谱和相位谱主要针对满足傅里叶变换条件的信号,比如能量信号。而工程和实际中接触的信号往往都是随机信号,随机信号不满足FFT变换的条件(在宋老师的书中(见参考链接)提到随机信号不满足傅里叶变换绝对可积条件),不能直接进行FFT变换,顾一般不采用幅值谱和相位谱进行分析。在目前故障诊断领域,对相位谱的关注不多,所以功率谱可以看出对标幅值谱的存在

关于频域分析中的一些频谱、能量谱、功率谱、功率谱密度、自功率谱、互功率谱、随机信号的定义等等,请跳转下面这条链接了解:

信号处理(频谱,能量谱,功率谱)--学习笔记

https://blog.csdn.net/weixin_45647721/article/details/128008836

友情提示:上面链接的内容无法保证一定正确,请根据自己理解,自行判断。不过这是冷漠看了这么多科普,说的比较清晰、比较准确的一个。

1.内容概括

本文介绍信号频域分析中功率谱功率谱密度(PSD)的相关代码和分析过程!

请注意该功率谱和功率谱密度采用的是非参数法中的周期图法!周期图法!周期图法!!!

虽然本文提供了功率谱和功率谱密度的封装函数,但是推荐用Matlab的periodogram函数,本文只是重现了这个函数的结果,让大家更加透彻的理解。

除此之外,估计PSD的方法matlab提供了很多,如参数法、子空间方法等等。Matlab对应的函数具体如下:

有需要的小伙伴自行阅读哈!!!

该内容参考了一些资料:

1书籍:MATLAB数字信号处理85个实用按比例——入门到进阶  宋知用 编著

2书籍:从这里学NVH噪声、振动、模态分析的入门与进阶   谭祥军 编著

3、书籍:机械工程测试技术基础 第3版 熊诗波编著

4、matlab官网的一些例子和教程:

1)频域分析实践介绍

https://ww2.mathworks.cn/help/signal/ug/practical-introduction-to-frequency-domain-analysis_zh_CN.html#d126e17836

2)使用 FFT 获得功率频谱密度估计

https://ww2.mathworks.cn/help/signal/ug/power-spectral-density-estimates-using-fft.html

3)频谱估计

https://ww2.mathworks.cn/help/signal/nonparametric-spectral-estimation.html

5、了解功率谱密度和功率谱

https://www.bilibili.com/video/BV1ui421Z7XP/?spm_id_from=333.337.search-card.all.click&vd_source=50b116844fc6444ae380b4347979702f一个涵盖了幅值谱、功率谱和功率谱密度的视频,强烈推荐!!!)

6、一些有价值的科普(公众号搜索),理论讲述更加全面

1)信号处理进阶之路,文章名称:能量域特征提取方法https://mp.weixin.qq.com/s/W-qsi0e1aWC3pz3c4dy8kA

2)看海的城堡,文章名称:信号频域分析方法的理解(频谱、能量谱、功率谱和倒频谱):https://mp.weixin.qq.com/s/RpCoRAiZlo96wWYgW09lnw

3)声振之家,文章名称:几种经典功率谱估计方法的实现(Matlab)及其局限性https://mp.weixin.qq.com/s/xvYS-YnUtlXntRsKXAkkMQ

代码采用了Matlab 2024a进行运行,欢迎大家测试和提出问题!

2.理论铺垫

功率谱和功率谱密度是针对随机信号而言,那么首先要认清什么是随机信号?

借用熊老师关于信号分类的定义,如下图:

确定性信号:可以表示为一个确定的时间函数,因

PSD(功率谱密度)是一种用于评价波面数据的方法,通过分析频谱来获取波面在不同频率分量上的振幅平方。PSD曲线可以提供丰富的面形特征信息,并且特别适用于评估中频波面误差。使用PSD曲线评价结果直观且便捷,可以通过增加PSD控制线的方式来快速分析误差产生原因。在光学检测领域,PSD已成为评价中频面形误差的最佳方法。\[2\]\[3\] 要将频谱转换为功率谱密度图像,可以使用Welch方法和Matplotlib中的plt.psd()函数。首先,导入scipy的signal模块,然后使用signal.welch()函数计算频谱和功率谱密度。最后,使用plt.semilogy()函数绘制功率谱密度图像,并使用plt.xlabel()和plt.ylabel()函数添加坐标轴标签。最后,使用plt.show()函数显示图像。\[1\] #### 引用[.reference_title] - *1* [Python 图像频谱:探究图像的功率谱密度](https://blog.csdn.net/update7/article/details/129743043)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [光学算法——PSD功率谱密度](https://blog.csdn.net/zhaitianbao/article/details/116938422)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值