图论(二)——子图和图运算

本文深入探讨了图论的基本概念,包括子图、点导出子图、边导出子图、生成子图等,并详细讲解了图的运算如删点、删边、并、交、差、对称差、联、积图、合成图和图的联合。此外,还讨论了路与图的连通性、连通图的特性以及一些关键的证明题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、子图

  • 子图——如果 V ( H ) ∈ V ( G ) , E ( H ) ∈ E ( G ) V(H)∈V(G),E(H)∈E(G) V(H)V(G),E(H)E(G),且H中边重数不超过G中对应边重数,则称H是G的子图
  • 点导出子图——假设 V ′ ∈ V V'∈V VV,则 V ′ V' V及两端点都在 V ′ V' V中的边合起来为点导出子图
  • 边到处子图——假设 E ′ ∈ E E'∈E EE,则 E ′ E' E及其边顶点合起来为边导出子图
  • 简单图的生成子图(包含原图所有顶点,边不管,若边数为m,则不同的生成子图有 2 m 2^m 2m个,不同的生成子图≠不同构)

二、图运算

  • 删点运算:若 V ′ ∈ V ( G ) V'∈V(G) VV(G),删除 V ′ V' V和与其连接的边,记为 G − V ′ G-V' GV
  • 删边运算:若 E ′ ∈ V ( E ) E'∈V(E) EV(E),删除 E ′ E' E,记为 G − E ′ G-E' GE
  • 并运算:两张图所有顶点、边合在一起,重复的记一个。若两张图完全不同, G 1 ∪ G 2 = G 1 + G 2 G_1∪G_2=G_1+G_2 G1G2=G1+G2
  • 交运算:两张图的共同点和边
  • 差运算: G 1 G_1 G1中减去 G 2 G_2 G2中的边,记为 G 1 − G 2 G_1-G_2 G1G2
  • 对称差运算(环和运算): G 1 ⊕ G 2 = G 1 △ G 2 = ( G 1 ∪ G 2 ) − ( G 1 ∩ G 2 ) = ( G 1 − G 2 ) ∪ ( G 2 − G 1 ) G_1 \oplus G_2=G_1 \bigtriangleup G_2=(G_1 \cup G_2)-(G_1 \cap G_2)=(G_1-G_2) \cup (G_2-G_1) G1G2=G1G2=(G1G2)(G1G2)=(G1G2)(G2G1)
  • 联运算:将不相交的 G 1 G_1 G1 G 2 G_2 G2图并起来,把 G 1 G_1 G1中每个顶点和 G 2 G_2 G2中每个顶点连起来,记为 G 1 ∨ G 2 G_1 \vee G_2 G1G2
  • 积图: G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) G_1=(V_1, E_1), G_2=(V_2, E_2) G1=(V1,E1),G2=(V2,E2),对点集 V = V 1 ∗ V 2 中 任 意 两 个 点 u = ( u 1 , u 2 ) 和 v = ( v 1 , v 2 ) V=V_1*V_2中任意两个点u=(u_1, u_2)和v=(v_1, v_2) V=V1V2u=(u1,u2)v=(v1,v2),当其中一个点相同,另一个点相邻时连接起来的图 G = G 1 ∗ G 2 G=G_1*G_2 G=G1G2
  • 合成图: G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) G_1=(V_1, E_1), G_2=(V_2, E_2) G1=(V1,E1),G2=(V2,E2),对点集 V = V 1 ∗ V 2 中 任 意 两 个 点 u = ( u 1 , u 2 ) 和 v = ( v 1 , v 2 ) V=V_1*V_2中任意两个点u=(u_1, u_2)和v=(v_1, v_2) V=V1V2u=(u1,u2)v=(v1,v2),当 u 1 和 v 1 u_1和v_1 u1v1相邻或者 u 1 = v 1 , u 2 和 v 2 相 邻 u_1=v_1,u_2和v_2相邻 u1=v1,u2v2时将 u , v u,v u,v连接起来的图 G = G 1 [ G 2 ] G=G_1[G_2] G=G1[G2]
  • 图的联合:把一个图找个顶点,另一个图找个顶点,合在一起即可,记为 G = G 1 ⋅ G 2 G=G_1 \cdot G_2 G=G1G2
运算点的数目边数目
G 1 + G 2 G_1+G_2 G1+G2 n 1 + n 2 n_1+n_2 n1+n2 m 1 + m 2 m_1+m_2 m1+m2
G 1 ∨ G 2 G_1\vee G_2 G1G2 n 1 + n 2 n_1+n_2 n1+n2 m 1 + m 2 + n 1 n 2 m_1+m_2+n_1n_2 m1+m2+n1n2
G 1 ∗ G 2 G_1*G_2 G1G2 n 1 n 2 n_1n_2 n1n2 n 1 m 2 + n 2 m 1 n_1m_2+n_2m_1 n1m2+n2m1
G 1 [ G 2 ] G_1[G_2] G1[G2] n 1 n 2 n_1n_2 n1n2 n 1 m 2 + n 2 2 m 1 n_1m_2+n_2^2m_1 n1m2+n22m1

三、路与图的连通性

  • 途径:任意两点间任意路径
  • 迹:边不重复
  • 路:边不重复且点不重复
  • 回路:起点与终点重合的迹
  • 圈(奇圈和偶圈):起点与终点重合的路。
  • 最小圈girth
  • 两点间距离:两顶点间权值和最小的那条路对应的权值和
  • 连通图:图中任意两点间都连通,即都有一条以上的路,w(G)表示图G的连通分支,表示有多少个真子图
  • 若图G不连通,则其补图连通
  • 偶图的判定定理:当且仅当这个图不包括奇圈

四、一些证明题

1、证明:在n阶连通图中

  • 至少有n-1条边
  • 如果边数大于n-1,则至少有一条闭迹
  • 如果恰有n-1条边,则至少有一个奇度点(假设每个顶点度数至少为2,利用握手定理反证)
    2、证明:若 δ ≥ 2 \delta \ge 2 δ2,则G中必然含有圈
    3、若图G不连通,则其补图连通
    4、一个图是偶图当且当它不包含奇圈
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值