一、子图
- 子图——如果 V ( H ) ∈ V ( G ) , E ( H ) ∈ E ( G ) V(H)∈V(G),E(H)∈E(G) V(H)∈V(G),E(H)∈E(G),且H中边重数不超过G中对应边重数,则称H是G的子图
- 点导出子图——假设 V ′ ∈ V V'∈V V′∈V,则 V ′ V' V′及两端点都在 V ′ V' V′中的边合起来为点导出子图
- 边到处子图——假设 E ′ ∈ E E'∈E E′∈E,则 E ′ E' E′及其边顶点合起来为边导出子图
- 简单图的生成子图(包含原图所有顶点,边不管,若边数为m,则不同的生成子图有 2 m 2^m 2m个,不同的生成子图≠不同构)
二、图运算
- 删点运算:若 V ′ ∈ V ( G ) V'∈V(G) V′∈V(G),删除 V ′ V' V′和与其连接的边,记为 G − V ′ G-V' G−V′
- 删边运算:若 E ′ ∈ V ( E ) E'∈V(E) E′∈V(E),删除 E ′ E' E′,记为 G − E ′ G-E' G−E′
- 并运算:两张图所有顶点、边合在一起,重复的记一个。若两张图完全不同, G 1 ∪ G 2 = G 1 + G 2 G_1∪G_2=G_1+G_2 G1∪G2=G1+G2
- 交运算:两张图的共同点和边
- 差运算: G 1 G_1 G1中减去 G 2 G_2 G2中的边,记为 G 1 − G 2 G_1-G_2 G1−G2
- 对称差运算(环和运算): G 1 ⊕ G 2 = G 1 △ G 2 = ( G 1 ∪ G 2 ) − ( G 1 ∩ G 2 ) = ( G 1 − G 2 ) ∪ ( G 2 − G 1 ) G_1 \oplus G_2=G_1 \bigtriangleup G_2=(G_1 \cup G_2)-(G_1 \cap G_2)=(G_1-G_2) \cup (G_2-G_1) G1⊕G2=G1△G2=(G1∪G2)−(G1∩G2)=(G1−G2)∪(G2−G1)
- 联运算:将不相交的 G 1 G_1 G1和 G 2 G_2 G2图并起来,把 G 1 G_1 G1中每个顶点和 G 2 G_2 G2中每个顶点连起来,记为 G 1 ∨ G 2 G_1 \vee G_2 G1∨G2
- 积图: G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) G_1=(V_1, E_1), G_2=(V_2, E_2) G1=(V1,E1),G2=(V2,E2),对点集 V = V 1 ∗ V 2 中 任 意 两 个 点 u = ( u 1 , u 2 ) 和 v = ( v 1 , v 2 ) V=V_1*V_2中任意两个点u=(u_1, u_2)和v=(v_1, v_2) V=V1∗V2中任意两个点u=(u1,u2)和v=(v1,v2),当其中一个点相同,另一个点相邻时连接起来的图 G = G 1 ∗ G 2 G=G_1*G_2 G=G1∗G2
- 合成图: G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) G_1=(V_1, E_1), G_2=(V_2, E_2) G1=(V1,E1),G2=(V2,E2),对点集 V = V 1 ∗ V 2 中 任 意 两 个 点 u = ( u 1 , u 2 ) 和 v = ( v 1 , v 2 ) V=V_1*V_2中任意两个点u=(u_1, u_2)和v=(v_1, v_2) V=V1∗V2中任意两个点u=(u1,u2)和v=(v1,v2),当 u 1 和 v 1 u_1和v_1 u1和v1相邻或者 u 1 = v 1 , u 2 和 v 2 相 邻 u_1=v_1,u_2和v_2相邻 u1=v1,u2和v2相邻时将 u , v u,v u,v连接起来的图 G = G 1 [ G 2 ] G=G_1[G_2] G=G1[G2]
- 图的联合:把一个图找个顶点,另一个图找个顶点,合在一起即可,记为 G = G 1 ⋅ G 2 G=G_1 \cdot G_2 G=G1⋅G2
运算 | 点的数目 | 边数目 |
---|---|---|
G 1 + G 2 G_1+G_2 G1+G2 | n 1 + n 2 n_1+n_2 n1+n2 | m 1 + m 2 m_1+m_2 m1+m2 |
G 1 ∨ G 2 G_1\vee G_2 G1∨G2 | n 1 + n 2 n_1+n_2 n1+n2 | m 1 + m 2 + n 1 n 2 m_1+m_2+n_1n_2 m1+m2+n1n2 |
G 1 ∗ G 2 G_1*G_2 G1∗G2 | n 1 n 2 n_1n_2 n1n2 | n 1 m 2 + n 2 m 1 n_1m_2+n_2m_1 n1m2+n2m1 |
G 1 [ G 2 ] G_1[G_2] G1[G2] | n 1 n 2 n_1n_2 n1n2 | n 1 m 2 + n 2 2 m 1 n_1m_2+n_2^2m_1 n1m2+n22m1 |
三、路与图的连通性
- 途径:任意两点间任意路径
- 迹:边不重复
- 路:边不重复且点不重复
- 回路:起点与终点重合的迹
- 圈(奇圈和偶圈):起点与终点重合的路。
- 最小圈girth
- 两点间距离:两顶点间权值和最小的那条路对应的权值和
- 连通图:图中任意两点间都连通,即都有一条以上的路,w(G)表示图G的连通分支,表示有多少个真子图
- 若图G不连通,则其补图连通
- 偶图的判定定理:当且仅当这个图不包括奇圈
四、一些证明题
1、证明:在n阶连通图中
- 至少有n-1条边
- 如果边数大于n-1,则至少有一条闭迹
- 如果恰有n-1条边,则至少有一个奇度点(假设每个顶点度数至少为2,利用握手定理反证)
2、证明:若 δ ≥ 2 \delta \ge 2 δ≥2,则G中必然含有圈
3、若图G不连通,则其补图连通
4、一个图是偶图当且当它不包含奇圈