图论1.2子图与图的运算

子图
设G 和H为两个图,若V(H) V(G) , E(H) E(G) ,且H中边的重数不超过G中对应边的重数,则称H 是G 的子图. 记为H G 。有时又称G是H的母图。
当H G ,但H ≠ G时,则记为H G ,且称H为G的真子图。G的生成子图是指满足V(H) = V(G)的子图H。
边导出子图 假设E’是E的非空子集。以E’为边集,以E’中边的端点全体为顶点集所组成的子图称为G的由E’导出的子图,记为G[E’ ];简称为G的边导出子图,边集为 E \ E’ 的G 的导出子图简记为 G­E’ 。若E’ ={e },则用G–e来代替 G-{e}。
在这里插入图片描述
简单图G 中所有不同的生成子图(包括G和空图)的个数是2m个, 其中m为G 的边数。
图的运算
G1和G2不相交: 指它们无公共顶点.
G1和G2边不重 : 指它们无公共边.
并图G1∪G2 :是指其顶点集为V(G1)∪V(G2),边集为E(G1)∪E(G2) 的G 的一个子图 ;如果G1和G2是不相交的,有时就记其并图为G1+G2。
交图定义类似
在这里插入图片描述
在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G2。

    设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u = (u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G称为G1和G2积图,记为G = G1×G2。其中 ui adj vi 表 ui 和vi邻接,如下图所示。

在这里插入图片描述
Qn有2n个点,它的点可以用a1 a2…an来标定,其中ai是0或者1。如果Qn的两个点的二进制表示式中只有一处不同,则它们邻接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值