for my article

1. basic

  1. h ( u ) = 1 2 ∥ u − β ∥ 2 2 + λ ∥ u ∥ 1 h(u) = \frac{1}{2}\| u -\beta \|_2^2 + \lambda \|u \|_1 h(u)=21uβ22+λu1 is strictly convex,

we need to prove S λ ( β ) = p r o x λ ∥ ⋅ ∥ 1 S_{\lambda}(\beta) = {\rm prox}_{\lambda \| \cdot\|_{1}} Sλ(β)=proxλ1

f : R N → R f: \mathbf{R}^{N} \rightarrow \mathbf{R} f:RNR
y y y is a subgradient of f f f at x 0 x_0 x0, if f ( x ) ≥ f ( x 0 ) + ⟨ y , x − x 0 ⟩ f(x) \ge f(x_0) + \langle y, x - x_0 \rangle f(x)f(x0)+y,xx0 for all x ∈ R N x \in \mathbf{R}^{N} xRN, and y ∈ ∂ f ( x 0 ) y \in \partial{f(x_0)} yf(x0)

0 ∈ u − β + ∂ ( λ ∥ u ∥ 1 ) 0 \in u - \beta + \partial(\lambda \| u \|_1) 0uβ+(λu1), the i-th component u i u_i ui obeys u i = β i − ∂ ( λ ∣ u i ∣ ) u_i = \beta_i - \partial(\lambda |u_i|) ui=βi(λui). Then u i = max ⁡ ( ∣ β i ∣ − λ , 0 ) ⋅ s i g n ( β i ) = P λ ( β i ) u_i = \max{(| \beta_i| - \lambda , 0) \cdot {\rm sign}(\beta_i) } = \mathscr{P}_{\lambda}(\beta_i) ui=max(βiλ,0)sign(βi)=Pλ(βi)
Thus, we have S λ ( β ) = p r o x λ ∥ ⋅ ∥ 1 β S_{\lambda}(\beta) = {\rm prox}_{\lambda \| \cdot \|_1}{\beta} Sλ(β)=proxλ1β by the concept of the soft-thresholding operator.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. The proof of Lemma2

p ( β ) = λ γ ∥ β ∥ 1 p( \beta) = \lambda \gamma \| \beta \|_1 p(β)=λγβ1 tell us that p r o x p β = S λ γ ( β ) {\rm prox}_{p} \beta = S_{ \lambda \gamma }(\beta) proxpβ=Sλγ(β).

λ p γ , ε ( β ) = p ( β ) + λ ε ∥ β ∥ 2 2 \lambda p_{\gamma, \varepsilon}(\beta) = p(\beta)+ \lambda \varepsilon \| \beta \|_2^2 λpγ,ε(β)=p(β)+λεβ22, and then we have p r o x λ p γ , ε β = p r o x p 1 + p ( β − u 1 + ρ ) {\rm prox}_{\lambda p_{\gamma, \varepsilon}} \beta = {\rm prox}_{\frac{p}{1+p}}(\frac{\beta - u}{1+\rho}) proxλpγ,εβ=prox1+pp(1+ρβu), where ρ = 2 λ ε , u = 0 , σ = 0 , \rho = 2 \lambda \varepsilon, u = 0, \sigma = 0, ρ=2λε,u=0,σ=0, Therefore,
p r o λ p γ , ε β = p r o x p 1 + 2 ε λ ( β 1 + 2 ε λ ) = S λ γ 1 + 2 ε λ ( β 1 + 2 ε λ ) = 1 1 + 2 ε λ S λ γ ( β ) \begin{aligned} {\rm pro}_{\lambda p_{\gamma, \varepsilon}} \beta &= {\rm prox}_{\frac{p}{1 + 2 \varepsilon \lambda }} (\frac{\beta}{1 + 2 \varepsilon \lambda})\\ &= S_{\frac{\lambda \gamma}{1 + 2 \varepsilon \lambda}} (\frac{\beta}{1 + 2 \varepsilon \lambda}) \\ &= \dfrac{1}{1 + 2 \varepsilon \lambda}S_{\lambda \gamma}(\beta) \end{aligned} proλpγ,εβ=prox1+2ελp(1+2ελβ)=S1+2ελλγ(1+2ελβ)=1+2ελ1Sλγ(β)

3. for ℓ 0.5 \ell_{0.5} 0.5

Since the function h ( u ) = 1 2 ∥ u − β ∥ 2 2 + λ ∥ u ∥ 0.5 h(u) = \frac{1}{2} \|u - \beta \|_2^2 + \lambda \| u \|_{0.5} h(u)=21uβ22+λu0.5 is strictly convex, it is easy to see that there exists a unique minimizer. According to the definition of the proximity operator, we need to prove
H λ ( β ) = p r o x λ ∥ ⋅ ∥ 0.5 β H_{\lambda}(\beta) = {\rm prox}_{\lambda \| \cdot \|_{0.5}} \beta Hλ(β)=proxλ0.5β

To do this, recalling the concept of a subgradient of a convex function f : R N → R f: \mathbf{R}^N \rightarrow \mathbf{R} f:RNR, we say that y y y is a subgradient of f f f at x 0 x_0 x0, if f ( x ) ≥ f ( x 0 ) + ⟨ y , x − x 0 ⟩ f(x) \ge f(x_0) + \langle y, x - x_0 \rangle f(x)f(x0)+y,xx0 for all x ∈ R N x \in \mathbf{R}^N xRN, denoted by y ∈ ∂ f ( x 0 ) y \in \partial f(x_0) yf(x0). Now u u u minimizes h h h if and only if 0 0 0 is a subgradient of the functional h h h at point u u u, that is, 0 ∈ u − β + ∂ ( λ ∥ u ∥ 0.5 ) 0 \in u - \beta + \partial (\lambda \| u \|_{0.5}) 0uβ+(λu0.5), i.e. the the i i i-th component u i u_i ui obeys u i = β i − ∂ ( λ ∣ u i ∣ 0.5 ) u_i = \beta_i - \partial (\lambda |u_i|_{0.5}) ui=βi(λui0.5). Then 这 里 根 据 徐 宗 本 老 师 的 证 明 写 出 结 果 \color{red}{这里根据徐宗本老师的证明写出结果} = P λ ( β i ) \mathscr{P}_{\lambda} (\beta_i) Pλ(βi).Thus, we have H λ ( β ) = p r o x λ ∥ ⋅ ∥ 0.5 β H_{\lambda} (\beta) = {\rm prox}_{\lambda \| \cdot \|_{0.5}} \beta Hλ(β)=proxλ0.5β by the theorem of the hard-thresholding operator. This completes the proof.
p r o λ p γ , ε β = p r o x p 1 + 2 ε λ ( β 1 + 2 ε λ ) = H λ γ 1 + 2 ε λ ( β 1 + 2 ε λ ) \begin{aligned} {\rm pro}_{\lambda p_{\gamma, \varepsilon}} \beta &= {\rm prox}_{\frac{p}{1 + 2 \varepsilon \lambda }} (\frac{\beta}{1 + 2 \varepsilon \lambda})\\ &= H_{\frac{\lambda \gamma}{1 + 2 \varepsilon \lambda}} (\frac{\beta}{1 + 2 \varepsilon \lambda}) \\ \end{aligned} proλpγ,εβ=prox1+2ελp(1+2ελβ)=H1+2ελλγ(1+2ελβ)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值