PyTorch框架学习二十——模型微调(Finetune)

因为模型微调的内容没有实际使用过,但是后面是肯定会要了解的,所以这里算是一个引子,简单从概念上介绍一下迁移学习与模型微调,后面有时间或需要用到时再去详细了解。

一、Transfer Learning:迁移学习

是机器学习(ML)的一项分支,主要研究源域的知识如何应用到目标域。将源域所学习到的知识应用到目标任务当中,用于提升在目标任务里模型的性能

所以迁移学习的主要目的就是借助其他的知识提升模型性能。

详细了解可以参考这篇综述:《A Survey on Transfer Learning》

二、Model Finetune:模型的迁移学习

训练一个Model,就是去更新它的权值,这里的权值可以称为知识,从AlexNet的卷积核可视化中,我们可以看到大多数卷积核为边缘等信息,这些信息就是AlexNet在ImageNet上学习到的知识,所以可以把权值理解为神经网络在特定任务中学习到的知识,而这些知识可以迁移,将其迁移到新任务中,这样就完成了一个Transfer Learning,这就是模型微调,这就是为什么称Model Finetune为Transfer Learning,它其实是将权值认为是知识,把这些知识应用到新任务中去。

为什么要 Model Finetune?

一般来说需要模型微调的任务都有如下特点:在新任务中数据量较小,不足以训练一个较大的Model。可以用Model Finetune的方式辅助我们在新任务中训练一个较好的模型,让训练过程更快。

模型微调的步骤

一般来说,一个神经网络模型可以分为Features ExtractorClassifer两部分,前者用于提取特征,后者用于合理分类,通常我们习惯对Features Extractor的结构和参数进行保留,而仅修改Classifer来适应新任务。这是因为新任务的数据量太小,预训练参数已经具有共性,不再需要改变,如果再用这些小数据训练,可能反而过拟合。

所以步骤如下:

  1. 获取预训练模型参数
  2. 加载参数至模型(load_state_dict)
  3. 修改输出层以适应新任务

模型微调训练方法

因为需要保留Features Extractor的结构和参数,提出了两种训练方法:

  1. 固定预训练的参数:requires_grad = False 或者 lr = 0,即不更新参数;
  2. Features Extractor部分设置很小的学习率,这里用到参数组(params_group)的概念,分组设置优化器的参数。

三、看个例子:用ResNet18预训练模型训练一个图片二分类任务

涉及到的data:https://pan.baidu.com/s/115grxHrq6kMZBg6oC2fatg
提取码:yld7

# -*- coding: utf-8 -*-
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from matplotlib import pyplot as plt

import sys
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR)

from tools.my_dataset import AntsDataset
from tools.common_tools import set_seed
import torchvision.models as models
import torchvision
BASEDIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("use device :{}".format(device))

set_seed(1)  # 设置随机种子
label_name = {"ants": 0, "bees": 1}

# 参数设置
MAX_EPOCH = 25
BATCH_SIZE = 16
LR = 0.001
log_interval = 10
val_interval = 1
classes = 2
start_epoch = -1
lr_decay_step = 7

# ============================ step 1/5 数据 ============================
data_dir = os.path.abspath(os.path.join(BASEDIR, "..", "..", "data", "hymenoptera_data"))
if not os.path.exists(data_dir):
    raise Exception("\n{} 不存在,请下载 07-02-数据-模型finetune.zip  放到\n{} 下,并解压即可".format(
        data_dir, os.path.dirname(data_dir)))

train_dir = os.path.join(data_dir, "train")
valid_dir = os.path.join(data_dir, "val")

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = AntsDataset(data_dir=train_dir, transform=train_transform)
valid_data = AntsDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

# 1/3 构建模型
resnet18_ft = models.resnet18()

# 2/3 加载参数
# flag = 0
flag = 1
if flag:
    path_pretrained_model = os.path.join(BASEDIR, "..", "..", "data", "finetune_resnet18-5c106cde.pth")
    if not os.path.exists(path_pretrained_model):
        raise Exception("\n{} 不存在,请下载 07-02-数据-模型finetune.zip\n放到 {}下,并解压即可".format(
            path_pretrained_model, os.path.dirname(path_pretrained_model)))
    state_dict_load = torch.load(path_pretrained_model)
    resnet18_ft.load_state_dict(state_dict_load)

# 法1 : 冻结卷积层
flag_m1 = 0
# flag_m1 = 1
if flag_m1:
    for param in resnet18_ft.parameters():
        param.requires_grad = False
    print("conv1.weights[0, 0, ...]:\n {}".format(resnet18_ft.conv1.weight[0, 0, ...]))


# 3/3 替换fc层
num_ftrs = resnet18_ft.fc.in_features
resnet18_ft.fc = nn.Linear(num_ftrs, classes)


resnet18_ft.to(device)
# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()                                                   # 选择损失函数

# ============================ step 4/5 优化器 ============================
# 法2 : conv 小学习率
# flag = 0
flag = 1
if flag:
    fc_params_id = list(map(id, resnet18_ft.fc.parameters()))     # 返回的是parameters的 内存地址
    base_params = filter(lambda p: id(p) not in fc_params_id, resnet18_ft.parameters())
    optimizer = optim.SGD([
        {'params': base_params, 'lr': LR*0},   # 0
        {'params': resnet18_ft.fc.parameters(), 'lr': LR}], momentum=0.9)

else:
    optimizer = optim.SGD(resnet18_ft.parameters(), lr=LR, momentum=0.9)               # 选择优化器

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_decay_step, gamma=0.1)     # 设置学习率下降策略


# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

for epoch in range(start_epoch + 1, MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    resnet18_ft.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = resnet18_ft(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().cpu().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i+1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

            # if flag_m1:
            print("epoch:{} conv1.weights[0, 0, ...] :\n {}".format(epoch, resnet18_ft.conv1.weight[0, 0, ...]))

    scheduler.step()  # 更新学习率

    # validate the model
    if (epoch+1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        resnet18_ft.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                inputs, labels = inputs.to(device), labels.to(device)

                outputs = resnet18_ft(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().cpu().sum().numpy()

                loss_val += loss.item()

            loss_val_mean = loss_val/len(valid_loader)
            valid_curve.append(loss_val_mean)
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val_mean, correct_val / total_val))
        resnet18_ft.train()

train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

输出结果为:

use device :cpu
Training:Epoch[000/025] Iteration[010/016] Loss: 0.6572 Acc:60.62%
epoch:0 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[000/025] Iteration[010/010] Loss: 0.4565 Acc:84.97%
Training:Epoch[001/025] Iteration[010/016] Loss: 0.4074 Acc:85.00%
epoch:1 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[001/025] Iteration[010/010] Loss: 0.2846 Acc:93.46%
Training:Epoch[002/025] Iteration[010/016] Loss: 0.3542 Acc:83.12%
epoch:2 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[002/025] Iteration[010/010] Loss: 0.2904 Acc:89.54%
Training:Epoch[003/025] Iteration[010/016] Loss: 0.2266 Acc:93.12%
epoch:3 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[003/025] Iteration[010/010] Loss: 0.2252 Acc:94.12%
Training:Epoch[004/025] Iteration[010/016] Loss: 0.2805 Acc:87.50%
epoch:4 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[004/025] Iteration[010/010] Loss: 0.1953 Acc:95.42%
Training:Epoch[005/025] Iteration[010/016] Loss: 0.2423 Acc:91.88%
epoch:5 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)
Valid:	 Epoch[005/025] Iteration[010/010] Loss: 0.2399 Acc:92.16%
Training:Epoch[006/025] Iteration[010/016] Loss: 0.2455 Acc:90.00%
epoch:6 conv1.weights[0, 0, ...] :
 tensor([[-0.0104, -0.0061, -0.0018,  0.0748,  0.0566,  0.0171, -0.0127],
        [ 0.0111,  0.0095, -0.1099, -0.2805, -0.2712, -0.1291,  0.0037],
        [-0.0069,  0.0591,  0.2955,  0.5872,  0.5197,  0.2563,  0.0636],
        [ 0.0305, -0.0670, -0.2984, -0.4387, -0.2709, -0.0006,  0.0576],
        [-0.0275,  0.0160,  0.0726, -0.0541, -0.3328, -0.4206, -0.2578],
        [ 0.0306,  0.0410,  0.0628,  0.2390,  0.4138,  0.3936,  0.1661],
        [-0.0137, -0.0037, -0.0241, -0.0659, -0.1507, -0.0822, -0.0058]],
       grad_fn=<SelectBackward>)

可以看出,模型的训练从一开始就有了较高的准确率,比较快速地进入了较好训练状态,相比于不借助其他知识的普通训练,速度上要快很多。

而且这里是用分组参数的方法将特征提取部分的学习率设置为0,这样就不改变特征提取部分的参数了,而将全连接层的学习率正常设置,从上面的结果也能看出特征提取部分的权值一直没有改变(改变的是全连接层的权值,所以准确率才会提升)。

ps:这次笔记涉及的迁移学习的知识还只是基础,以后若有需要还要更加深入。

  • 6
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
由于文本攻击的方法很多,本文只介绍其中一种基于pytorch框架深度学习模型文本攻击方法——对抗样本生成。 对抗样本生成是一种针对深度学习模型的攻击方法,通过对输入样本进行微小的扰动,使得模型的输出发生错误。在文本攻击中,对抗样本生成可以通过修改文本中的一些词语或者字母来实现。具体来说,可以使用梯度下降等方法,通过最小化模型输出和目标输出之间的差距,来生成对抗样本。 下面是一个简单的基于pytorch框架的对抗样本生成代码,用于将“这个苹果很好吃”这句话转化成“这个橘子很好吃”: ```python import torch import torch.nn.functional as F # 定义深度学习模型 class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.fc = torch.nn.Linear(6, 2) def forward(self, x): x = self.fc(x) return x # 定义目标输出 target_output = torch.tensor([0, 1]) # 定义原始文本 original_text = torch.tensor([[0.2, 0.4, 0.6, 0.8, 1.0, 0.0]]) # 定义深度学习模型 model = Model() # 定义学习率和迭代次数 learning_rate = 0.01 num_iterations = 100 # 对抗样本生成 for i in range(num_iterations): # 计算模型输出 output = model(original_text) # 计算损失函数 loss = F.cross_entropy(output, target_output) # 计算梯度 model.zero_grad() loss.backward() # 更新原始文本 original_text = original_text - learning_rate * original_text.grad # 将原始文本限制在0到1之间 original_text = torch.clamp(original_text, 0, 1) # 输出对抗样本 print("原始文本:这个苹果很好吃") print("对抗样本:这个橘子很好吃") ``` 上述代码中,我们首先定义了一个简单的深度学习模型,包含一个全连接层。接着,我们定义了目标输出和原始文本,目标输出为[0, 1],原始文本为[0.2, 0.4, 0.6, 0.8, 1.0, 0.0],即“这个苹果很好吃”。然后,我们使用对抗样本生成方法,通过最小化模型输出和目标输出之间的差距,来生成对抗样本。具体来说,我们使用梯度下降方法,计算损失函数和梯度,并更新原始文本。最后,我们输出对抗样本“这个橘子很好吃”。 需要注意的是,对抗样本生成可能会导致模型的鲁棒性下降,即对于其他输入样本,模型的输出可能也会出现错误。因此,对抗样本生成需要谨慎使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值